U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar
Abstract
:1. Introduction
2. Regional Geological Setting
3. Materials and Methods
3.1. Zircon and Zirconolite
3.2. Growth Zonation of Zircon and Zirconolite
3.3. LA-ICP-MS Instrumentations
4. Results
4.1. U–Pb Dating of Zircons
4.2. U–Pb Dating of Zirconolite
4.3. REE Composition of Zircon and Zirconolite
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, R. On the Ruby Mines near Mogok, Burma. Proc. R. Geogr. Soc. Mon. Rec. Geogr. 1888, 10, 261–275. [Google Scholar] [CrossRef]
- Thu, K. The Igneous Rocks of the Mogok Stone Tract: Their Distribution, Petrography, Petrochemistry, Sequence, Geochronology and Economic Geology. Ph.D. Thesis, University of Yangon, Yangon, Myanmar, 2007. [Google Scholar]
- Themelis, T. Gems and Mines of Mogok; A&T Pub.: Los Angeles, CA, USA, 2008. [Google Scholar]
- Phyo, M.M. Mineralogical, Gemmological and Petrological Study of the Mogok Stone Tract in Myanmar with a Special Focus on Gem-Quality Ruby and Spinel. Ph.D. Thesis, Universität Basel, Basel, Switzerland, 2019. [Google Scholar]
- Harlow, G.E.; Bender, W. A study of ruby (corundum) compositions from the Mogok Belt, Myanmar: Searching for chemical fingerprints. Am. Mineral. 2013, 98, 1120–1132. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Zaw, K.; Meffre, S.; Yui, T.-F.F.; Thu, K. Advances in trace element “fingerprinting” of gem corundum, ruby and sapphire, Mogok area, Myanmar. Minerals 2014, 5, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Fallick, A.E.; Garnier, V.; France-Lanord, C.; Ohnenstetter, D.; Schwarz, D. Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology 2005, 33, 249–252. [Google Scholar] [CrossRef]
- Yui, T.F.; Zaw, K.; Wu, C.M. A preliminary stable isotope study on Mogok Ruby, Myanmar. Ore Geol. Rev. 2008, 34, 192–199. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, L.; Yui, T.-F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for gem color and genesis. Miner. Depos. 2015, 50, 25–39. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Boyce, A.J.; Pardieu, V.; Pham, V.L. Pink and red spinels in marble: Trace elements, oxygen isotopes, and sources. Can. Mineral. 2017, 55, 743–761. [Google Scholar] [CrossRef]
- Phyo, M.M.; Franz, L.; Bieler, E.; Balmer, W.; Krzemnicki, M.S. Spinel from Mogok, Myanmar–A detailed inclusion study by raman microspectroscopy and scanning electron microscopy. J. Gemmol. 2019, 36, 418–435. [Google Scholar] [CrossRef]
- Giuliani, G.; Dubessy, J.; Banks, D.A.; Lhomme, T.; Ohnenstetter, D. Fluid inclusions in ruby from Asian marble deposits: Genetic implications. Eur. J. Mineral. 2015, 27, 393–404. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Piilonen, P.C.; Zaw, K.; Meffre, S.; Thompson, J. Sapphire within zircon-rich gem deposits, Bo Loei, Ratanakiri Province, Cambodia: Trace elements, inclusions, U–Pb dating and genesis. Aust. J. Earth Sci. 2015, 62, 761–773. [Google Scholar]
- Sutherland, F.; Zaw, K.; Meffre, S.; Thompson, J.; Goemann, K.; Thu, K.; Nu, T.; Zin, M.; Harris, S. Diversity in ruby geochemistry and its inclusions: Intra- and inter-continental comparisons from Myanmar and Eastern Australia. Minerals 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Coenraads, R.R.; Lin Sutherland, F.; Kinny, P.D. The origin of sapphires: U–Pb dating of zircon inclusions sheds new light. Mineral. Mag. 1990, 54, 113–122. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, F.L.; Graham, I.; Meffre, S.; Thu, K. Dating zircon inclusions in gem corundum deposits and genetic implications. In Proceedings of the 13th Quardrennial IAGOD Symposium, Adelaide, Australia, 6–9 April 2010. [Google Scholar]
- Elmaleh, E.; Schmidt, S.T.; Karampelas, S.; Link, K.; Kiefert, L.; Süssenberger, A.; Paul, A. U–Pb ages of zircon inclusions in sapphires from Ratnapura and Balangoda (Sri Lanka) and implications for geographic origin. GEMS Gemol. 2019, 55, 18–28. [Google Scholar]
- Krzemnicki, M.S.; Wang, H.A.O.; Phyo, M.M. Age dating applied as a testing procedure to gemstones and biogenic gem materials. In Proceedings of the 36th IGC Conference, Nante, France, 27–31 August 2019; pp. 48–50. [Google Scholar]
- Link, K. Age Determination of zircon inclusions in faceted sapphires. J. Gemmol. 2016, 34, 692–700. [Google Scholar] [CrossRef]
- Garnier, V.; Maluski, H.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Ar–Ar and U–Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can. J. Earth Sci. 2006, 43, 509–532. [Google Scholar] [CrossRef]
- Mitchell, A.; Chung, S.L.; Oo, T.; Lin, T.H.; Hung, C.H. Zircon U–Pb ages in Myanmar: Magmatic-metamorphic events and the closure of a neo-Tethys ocean? J. Asian Earth Sci. 2012, 56, 1–23. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Duroc-Danner, J.M.; Meffre, S. Age and origin of gem corundum and zircon megacrysts from the Mercaderes-Rio Mayo area, South-west Colombia, South America. Ore Geol. Rev. 2008, 34, 155–168. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Rösel, D.; Häger, T.; Mertz-Kraus, R.; Saul, J.M. LA-ICP-MS U–Pb dating of rutile inclusions within corundum (ruby and sapphire): New constraints on the formation of corundum deposits along the Mozambique belt. Miner. Depos. 2017, 52, 641–649. [Google Scholar] [CrossRef]
- Link, K. New age data for blue sapphire from Mogok, Myanmar. J. Gemmol. 2016, 35, 107–109. [Google Scholar]
- Balmer, W.A.; Hauzenberger, C.A.; Fritz, H.; Sutthirat, C. Marble-hosted ruby deposits of the Morogoro Region, Tanzania. J. Afr. Earth Sci. 2017, 134, 626–643. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Robb, L.J.; Morley, C.K.; Searle, M.P.; Cawood, P.A.; Whitehouse, M.J.; Kirkland, C.L.; Roberts, N.M.W.; Myint, T.A. The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system. Ore Geol. Rev. 2016, 79, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Chhibber, H.L. The Geology of Burma; Macmillan and Co. Limited: London, UK, 1934. [Google Scholar]
- Iyer, L.A.N. The Geology and Gem-Stones of the Mogok Stone Tract, Burma. Memoirs of the Geological Survey of India; Calcutta: Delhi, India, 1953; Volume 82. [Google Scholar]
- Mitchell, A.H.G.; Htay, M.T.; Htun, K.M.; Win, M.N.; Oo, T.; Hlaing, T. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. J. Asian Earth Sci. 2007, 29, 891–910. [Google Scholar] [CrossRef]
- Bertrand, G.; Rangin, C.; Maluski, H.; Han, T.A.; Thein, M.; Myint, O.; Maw, W.; Lwin, S. Cenozoic metamorphism along the Shan scarp (Myanmar): Evidences for ductile shear along the Sagaing fault or the northward migration of the eastern Himalayan syntaxis? Geophys. Res. Lett. 1999, 26, 915–918. [Google Scholar] [CrossRef]
- Bender, F. Geology of Burma; Schweizerbart Science Publishers: Stuttgart, Germany, 1983. [Google Scholar]
- Zaw, K. Geological, petrological and geochemical characteristics of granitoid rocks in Burma: With special reference to the associated W-Sn mineralization and their tectonic setting. J. Southeast Asian Earth Sci. 1990, 4, 293–335. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Searle, M.P.; Morley, C.K.; Whitehouse, M.P.; Spencer, C.J.; Robb, L.J. The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data. Gondwana Res. 2016, 39, 401–422. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Yang, H.M. Late Cenozoic volcanism in central Myanmar: Geochemical characteristics and geodynamic significance. Lithos 2016, 245, 174–190. [Google Scholar] [CrossRef]
- Thu, Y.K.; Win, M.M.; Enami, M.; Tsuboi, M. Ti–rich biotite in spinel and quartz–bearing paragneiss and related rocks from the Mogok metamorphic belt, central Myanmar. J. Mineral. Petrol. Sci. 2016, 111, 270–282. [Google Scholar]
- La Touche, T.H.D. Geology of the Northern Shan State; Office of the Geological Survey of India: Calcutta, India, 1913. [Google Scholar]
- Thein, M. Modes of occurrence and origin of precious gemstone deposits of the Mogok Stone Tract. J. Myanmar Geosci. Soc. 2008, 1, 75–84. [Google Scholar]
- Brook, M.; Snelling, N.J. K/Ar and Rb/Sr age determinations on rocks and minerals from Burma. In Report of the Isotope Geology Unit 76/12; Institute of Geological Science: Keyworth, Nottingham, UK, 1976. [Google Scholar]
- Barley, M.E.; Pickard, A.L.; Zaw, K.; Rak, P.; Doyle, M.G. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics 2003, 22, 1–11. [Google Scholar] [CrossRef]
- Searle, M.P.; Waters, D.J.; Morley, C.K.; Gardiner, N.J.; Htun, U.K.; Nu, T.T.; Robb, L.J. Chapter 12 Tectonic evolution of the Mogok metamorphic and Jade mines belts and ophiolitic terranes of Burma (Myanmar). In Myanmar: Geology, Resources and Tectonics; Barber, A.J., Zaw, K., Crow, M.J., Eds.; Geological Society: London, UK, 2017; Volume 48, pp. 261–293. [Google Scholar]
- Searle, D.L.; Haq, B.T. The Mogok belt of Burma and its relationship to the Himalayan orogeny. In Proceedings of the 22nd International Geological Congress, New Delhi, India, 14–22 December 1964; Volume 22, pp. 132–161. [Google Scholar]
- Clegg, E.L.G. The Cretaceous and associated rocks of Burma. Mem. Geol. Surv. India 1941, 74, 1–102. [Google Scholar]
- Sone, M.; Metcalfe, I. Parallel Tethian sutures in mainland Sout-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian Orogeny. C. R. Geosci. 2008, 340, 166–179. [Google Scholar] [CrossRef]
- Zaw, K.; Swe, K.; Barber, A.J.; Crow, M.J.; Nwe, Y.Y. Chapter 1 Introduction to the geology of Myanmar. In Myanmar: Geology, Resources and Tectonics; Barber, A.J., Zaw, K., Crow, M.J., Eds.; Geological Society: London, UK, 2017; Volume 48. [Google Scholar]
- Damon, P.E. Granities from the Kabaing Batholithic Complex, Mogok Area, Burma; Correlation and Chronology of ore Deposits and Volcanic Rocks; Annual Progress Report No. C00-689-60; United States Atomic Energy Commission: Washington, DC, USA, 1966. [Google Scholar]
- Phyo, M.M.; Franz, L.; De Capatini, C.; Balmer, A.W.; Krzemnicki, M.S. Petrology and PT-conditions of quartz- and nepheline-bearing gneisses from Mogok Stone Tract, Myanmar. In Proceedings of the 15th Swiss Geoscience Meeting, Davos, Switzerland, 17–18 November 2017. [Google Scholar]
- Bayliss, P.; Mazzi, F.; Munno, R.; White, T.J. Mineral nomenclature: Zirconolite. Mineral. Mag. 1989, 53, 565–569. [Google Scholar] [CrossRef]
- Hughes, R.W. Ruby & Sapphire; RWH Publishing: Bangkok, Thailand, 1997. [Google Scholar]
- Schaltegger, U.; Schmitt, A.K.; Horstwood, M.S.A. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem. Geol. 2015, 402, 89–110. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hendriks, L.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. J. Anal. At. Spectrom. 2017, 32, 548–561. [Google Scholar] [CrossRef]
- Wang, H.A.O.; Krzemncki, M.S. Multi-Element Analysis of Minerals using Laser Ablation Inductively Coupled Plasma Time Of Flight Mass Spectrometry. Manuscript near submission.
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels, G.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P.; et al. Community-Derived Standards for LA-ICP-MS U–(Th–)Pb Geochronology–Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanal. Res. 2016, 40, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.F.O.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U–Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Ulianov, A.; Müntener, O.; Schaltegger, U.; Bussy, F. The data treatment dependent variability of U–Pb zircon ages obtained using mono-collector, sector field, laser ablation ICPMS. J. Anal. At. Spectrom. 2012, 27, 663–676. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Spencer, C.J.; Kirkland, C.L.; Taylor, R.J.M. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 2016, 7, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Günther, D. Preliminary Characterisation of New Glass Reference Materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm, 213 nm and 266 nm Wavelengths. Geostand. Geoanal. Res. 2005, 29, 315–331. [Google Scholar] [CrossRef]
- Sylvester, P.J.; Ghaderi, M. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem. Geol. 1997, 141, 49–65. [Google Scholar] [CrossRef]
- McDonougha, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Thu, Y.K.; Enami, M.; Kato, T.; Tsuboi, M. Granulite facies paragneisses from the middle segment of the Mogok metamorphic belt, central Myanmar. J. Mineral. Petrol. Sci. 2017, 112, 1–19. [Google Scholar]
- Win, M.M.; Enami, M.; Kato, T. Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar. J. Asian Earth Sci. 2016, 117, 304–316. [Google Scholar] [CrossRef]
- Bertrand, G.; Rangin, C.; Maluski, H.; Bellon, H. Diachronous cooling along the Mogok Metamorphic Belt (Shan scarp, Myanmar): The trace of the northward migration of the Indian syntaxis. J. Asian Earth Sci. 2001, 19, 649–659. [Google Scholar] [CrossRef]
- Mitchell, A.H.G. Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region. J. Geol. Soc. Lond. 1993, 150, 1089–1102. [Google Scholar] [CrossRef]
- Searle, M.P.; Noble, S.R.; Cottle, J.M.; Waters, D.J.; Mitchell, A.H.G.; Hlaing, T.; Horstwood, M.S.A. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U–Th–Pb dating of metamorphic and magmatic rocks. Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Min, M. Thermochronology Applied to Strike-Slip Zones Central America and Myanmar. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2007. [Google Scholar]
- Crow, M.J.; Zaw, K. Appendix Geochronology in Myanmar (1964–2017). In Myanmar: Geology, Resources and Tectonics; Barber, A.J., Zaw, K., Crow, M.J., Eds.; Geological Society: London, UK, 2017; Volume 48, pp. 713–759. [Google Scholar]
- Dewey, J.F.; Cande, S.; Pitman, W.C. Tectonic evolution of the India-Eurasia collision zone. Eclogae Geol. Helv. 1989, 82, 717–734. [Google Scholar]
- Jiang, H.; Li, W.Q.; Jiang, S.Y.; Wang, H.; Wei, X.P. Geochronological, geochemical and Sr–Nd–Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos 2017, 268–271, 32–47. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Gieré, R. Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: Implications for mobility of Ti, Zr and REE. Contrib. Mineral. Petrol. 1986, 93, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Bieri, W.; Grobety, B.; Peretti, A.; Hametner, K.; Günther, D. Chemical composition of apatite inclusions in corundum and spinel determined by LA-ICP-MS and its potential for authentication and provenance determination. In Proceedings of the Goldschmidt 2010: Earth, Energy, and the Environment, Knoxville, TN, USA, 13–18 June 2010; p. 89. [Google Scholar]
Sample Name | Locality | Host Material | Analysed Grain | Weight (ct) | Sample Photo |
---|---|---|---|---|---|
SSEF96663_A | Mansin | Ruby | 4 Zircons and 5 Zirconolites | 2.411 | |
SSEF96666_A | Kadotetat | 1 Zircon | 2.431 | ||
SSEF96666_B | 1 Zircon | 1.270 | |||
SSEF96667_A | Kyatpyin | 1 Zircon | 1.615 | ||
SSEF96668_A | Kyaukpoke | 1 Zircon | 0.268 | ||
SSEF92720_D | Kyauksaung | Spinel | 2 Zircons | 0.405 | |
SSEF92725_D | Kyauksin | 2 Zircons | 0.673 | ||
SSEF92725_E | 1 Zircon | 0.940 | |||
BLG_12 | Bawlongyi | Ruby- and Spinel-bearing Marble | 32 Zircons and 9 Zirconolites | ||
ALT_03 | Aunglan Taung | Gneiss | 40 Zircons | ||
K_01 | Kinn | 24 Zircons |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phyo, M.M.; Wang, H.A.O.; Guillong, M.; Berger, A.; Franz, L.; Balmer, W.A.; Krzemnicki, M.S. U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals 2020, 10, 195. https://doi.org/10.3390/min10020195
Phyo MM, Wang HAO, Guillong M, Berger A, Franz L, Balmer WA, Krzemnicki MS. U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals. 2020; 10(2):195. https://doi.org/10.3390/min10020195
Chicago/Turabian StylePhyo, Myint Myat, Hao A.O. Wang, Marcel Guillong, Alfons Berger, Leander Franz, Walter A. Balmer, and Michael S. Krzemnicki. 2020. "U–Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar" Minerals 10, no. 2: 195. https://doi.org/10.3390/min10020195