Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. CBBs Manufacturing
2.2. Study Area and Soil Amelioration Test
2.3. Soil Sampling and Measurements and Physicochemical Properties of Soil and CBB Ash
2.4. Quantification of Increased Total Carbon and Nitrogen Content According to Soil Amelioration Test
- ∆CAM_CBB (tCha−1): change in the carbon increase alongside the soil amelioration test with CBB ash.
- CAFT_S (tCha−1): soil carbon content in soil at plow layer (0–15 cm) after harvest of maize.
- CCONT_S (tCha−1): soil carbon content in soil at plow layer (0–15 cm) of control plot (0%) after harvest of maize.
- CCBB (tCha−1): carbon content in the application quantity of CBB ash A or CBB ash B.
- ∆NAM_CBB (tha−1): change in the nitrogen increase alongside the soil amelioration test with CBB ash.
- NAFT_S (tha−1): soil nitrogen content in soil at plow layer (0–15 cm) after harvest of maize.
- NCONT_S (tha−1): soil nitrogen content in soil at plow layer (0–15 cm) of control plot (0%) after harvest of maize.
- NCBB (tha−1): nitrogen content in the application quantity of CBB ash A or CBB ash B.
- ∆CAM_CBBPM (tCha−1): change in the carbon increase alongside the soil amelioration test with CBB ash and pig manure.
- CAFT_S (tCha−1): soil carbon content in soil at plow layer (0–15 cm) after harvest of maize.
- CORIG_S (tCha−1): soil carbon content in untreated soil at plow layer (0–15 cm) prior to amelioration.
- CCBB (tCha−1): carbon content in the application quantity of CBB ash A or CBB ash B.
- CPM (tCha−1): carbon content in the application quantity of pig manure.
- ∆NAM_CBBPM (tha−1): change in the nitrogen increase alongside the soil amelioration test with CBB ash and pig manure.
- NAFT_S (tha−1): soil nitrogen content in soil at plow layer (0–15 cm) after harvest of maize.
- NORIG_S (tha−1): soil nitrogen content in untreated soil at plow layer (0–15 cm) prior to amelioration.
- NCBB (tha−1): nitrogen content in the application quantity of CBB ash A or CBB ash B.
- NPM (tha−1): nitrogen content in the application quantity of pig manure.
2.5. Data Analysis
3. Results and Discussion
3.1. Changes in Soil Carbon and Nitrogen Content as per the Application Rate in Test Fields (F1–F4)
3.2. Quantification of Increased Total Carbon and Nitrogen Content According to Soil Amelioration Test
3.3. Relationship between Soil Carbon and Nitrogen Content and Soil Chemical Properties in Field Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Group I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Minasny, B.; Malone, B.; McBratney, A.B.; Angers, A.D.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lal, R.; Lorenz, K.; Hüttl, R.; Schneider, B.; von Braun, J. Ecosystem Services and Carbon Sequestration in the Biosphere; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, S.; Li, Y.; Liu, J.; Zhuo, Y.; Zhang, W.; Wang, J.; Xu, L. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China. Agric. Ecosyst. Environ. 2018, 261, 115–124. [Google Scholar] [CrossRef]
- Song, G.H.; Li, L.Q.; Pan, G.X. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Cheng, K.; Zheng, J.; Nayak, D.; Smith, P.; Pan, G. Reevaluating biophysical and technologically attainable potential of topsoil carbon sequestration in China’s croplands. Soil Use Manag. 2013, 29, 501–509. [Google Scholar] [CrossRef]
- Sun, W.; Huang, Y.; Zhang, W.; Yu, Y. Carbon sequestration and its potential in agricultural soils of China. Global Biogeochem. Cy. 2010, 24, 1302–1307. [Google Scholar] [CrossRef]
- Lu, B.; Kong, S.; Han, B.; Wang, X.; Bai, Z. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007. China Environ. Sci. 2011, 31, 186–194. [Google Scholar]
- Liu, C.; Chung, C.E.; Zhang, F.; Yin, Y. The colors of biomass burning aerosols in the atmosphere. Sci. Rep. 2016, 6, 28267. [Google Scholar] [CrossRef]
- National Bureau of Statistics. National Economy and Social Development Statistic Bulletin; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2016; (In Chinese). Available online: http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991.html (accessed on 21 December 2019).
- Chen, Y.; Zhi, G.; Feng, Y.; Tian, C.; Bi, X.; Li, J.; Zhang, G. Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: A challenge to the coal briquetting policy. Environ. Pollut. 2015, 204, 58–63. [Google Scholar] [CrossRef]
- Li, H.M.; Zhao, X.F.; Yu, Y.Q.; Wu, T.; Qi, Y. China’s numerical management system for reducing national energy intensity. Energy Policy 2016, 94, 64–76. [Google Scholar] [CrossRef]
- Zhao, C.; Luo, K. Household consumption of coal and related sulfur, arsenic, fluorine and mercury emissions in China. Energy Policy 2018, 112, 221–232. [Google Scholar] [CrossRef]
- Sun, J.; Zhi, G.; Hitzenberger, R.; Chen, Y.; Tian, C.; Zhang, Y.; Feng, Y.; Cheng, M.; Zhang, Y.; Cai, J.; et al. Emission factors and light absorption properties of brown carbon from household coal combustion in China. Atmos. Chem. Phys. 2017, 17, 4769–4780. [Google Scholar] [CrossRef] [Green Version]
- Onukak, I.E.; Mohammed-Dabo, I.A.; Ameh, A.O.; Okoduwa, S.I.; Fasanya, O.O. Production and characterization of biomass briquettes from tannery solid waste. Recycling 2017, 2, 17. [Google Scholar] [CrossRef]
- Brunerová, A.; Roubík, H.; Brožek, M.; Haryanto, A.; Hasanudin, U.; Iryani, D.A.; Herák, D. Valorization of bio-briquette fuel by using spent coffee ground as an external additive. Energies 2020, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A review of technical and economic aspects of biomass briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Sakai, Y.; Nakano, S.; Wang, C.; Kito, H. Evaluation of SO2 emissions and health effects following the installation of desulfurization facilities and coal bio-briquette technology in China. J. Chem. Eng. Jpn. 2015, 48, 491–497. [Google Scholar] [CrossRef]
- Sakai, Y.; Seto, H.; Nagamoto, H. Evaluation of salt transport in the amelioration of salt-affected soil in China by using low-quality coal bio-briquette ash. J. Arid Land Stud. 2014, 24, 81–84. [Google Scholar]
- Sakai, Y.; Murata, H.; Ebato, C.; Liu, D.; Wang, C.; Nagamoto, H.; Sadakata, M. Salt-affected soil amelioration with low-quality coal bio-briquette ash in northeastern China. J. Arid Land Stud. 2015, 25, 93–96. [Google Scholar]
- Sakai, Y.; Shimizu, C.; Murata, H.; Seto, H.; Fukushima, R.; Koga, T.; Wang, C. Changes in soil physicochemical properties and maize production following improvement of salt-affected soils using coal bio-briquette ash in northeast China. Agronomy 2020, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterization and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sediments 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Bhaduri, D.; Saha, A.; Desai, D.; Meena, H.N. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 2016, 148, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Mia, S.; Dijkstra, F.A.; Singh, B. Long-term ageing of biochar: A molecular understanding with agricultural and environmental implications. Adv. Agron. 2017, 141, 1–51. [Google Scholar]
- Chaganti, V.N.; Crohn, D.M.; Šimůnek, J. Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agric. Water Manag. 2015, 158, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Amini, S.; Ghadiri, H.; Chen, C.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manage. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.X.; Shen, Y.F.; Li, S.Q. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Res. 2016, 196, 284–293. [Google Scholar] [CrossRef]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manage. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Raya-Moreno, I.; Cañizares, R.; Domene, X.; Carabassa, V.; Josep, A.M. Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochars. Sci. Total Environ. 2017, 598, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M.F.; Riba, M.; Alcañiz, J.M. Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Sci. Total Environ. 2019, 660, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Qureshi, R.H.; Qadir, M.A. Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol. 1997, 10, 247–260. [Google Scholar] [CrossRef]
- Nitta, Y.; Sadakata, M.; Matsumoto, S.; Yoshioka, K. Possible incentive to diffuse desulfurization equipment in China. J. Jpn. Inst. Energy 2006, 85, 191–196. (In Japanese) [Google Scholar]
- Kumar, D.; Singh, B. The use of coal fly ash in sodic soil reclamation. Land Degrad. Dev. 2003, 14, 285–299. [Google Scholar] [CrossRef]
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.; Rodrigues, S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Palumbo, A.V.; McCarthy, J.; Amonette, J.; Fisher, L.; Wullschleger, S.D.; Daniels, W. Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products. Adv. Environ. Res. 2004, 8, 425–438. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.Q.; Zheng, J.F.; Cheng, K.; Zhang, X.H.; Zheng, J.W.; Li, Z.C. Benefits of SOM in agro-ecosystems: The case of China. (Chap 27). In Soil Carbon: Science, Management and Policy for Multiple Benefits; Banwart, S., Ed.; CAB International: Wallingford, UK, 2015; Volume 71, pp. 383–401. [Google Scholar]
- Ministry of Agriculture of the People’s Republic China; Reform and Development Commission of China; Ministry of Science and Technology of China; Ministry of Financing of China; Ministry of Land Resource and Territory of China; Ministry of Environment Protection; Ministry of Water Resources of China; National Bureau of Forestry of China. A National Plan of Sustainable Agriculture 2015–2030. Policy Report of Agricultural Panning No. 145. 2015; (In Chinese). Available online: http://www.mof.gov.cn/mofhome/mof/zhengwuxinxi/zhengcefabu/201505/t20150528_1242763.htm (accessed on 21 December 2019).
- FAO. World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2015, 106, 162–163. [Google Scholar]
- US Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture Handbook 60; US Government Printing Office: Washington, DC, USA, 1954; p. 5.
- Xu, Y.G.; Yu, W.T.; Ma, Q.; Zhou, H. Potential risk of cadmium in a soil-plant system as a result of long-term (10 years) pig manure application. Plant Soil Environ. 2015, 61, 352–357. [Google Scholar]
- Wang, S.; Huang, M.; Shao, X.; Mickler, R.A.; Li, K.; Ji, J. Vertical distribution of soil organic carbon in China. Environ. Manag. 2004, 33, S200–S209. [Google Scholar] [CrossRef]
- Pan, G.; Xu, X.; Smith, P.; Pan, W.; Lal, R. An increase in topsoil SOC stock of China’s cropland between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- Mi, N.; Wang, S.Q.; Liu, J.Y.; Yu, G.R.; Zhang, W.J.; Jobb’agy, E.G. Soil inorganic carbon storage pattern in China. Global Change Biol. 2008, 14, 2380–2387. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D.; Schubert, S.; Noble, A.D.; Sahrawat, K.L.; Donald, L.S. Phytoremediation of sodic and saline-sodic soils. Adv. Agron. 2007, 96, 197–247. [Google Scholar]
- Mishra, A.; Sharma, S.D. Leguminous trees for the restoration of degraded sodic wasteland in Eastern Uttar Pradesh, India. Land Degrad. Dev. 2003, 14, 245–261. [Google Scholar] [CrossRef]
- Qadir, M.; Noble, A.D.; Oster, J.D.; Schubert, S.; Ghafoor, A. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use Manag. 2005, 21, 173–180. [Google Scholar] [CrossRef]
- Oster, J.D.; Frenkel, H. The chemistry of the reclamation of sodic soil with gypsum and lime. Soil Sci. Soc. Am. J. 1980, 44, 41–45. [Google Scholar] [CrossRef]
- Frenkel, H.; Gerstl, Z.; Alperovitch, N. Exchange-induced dissolution of gypsum and the reclamation of sodic soils. J. Soil Sci. 1989, 40, 599–611. [Google Scholar] [CrossRef]
- Shainberg, I.; Letey, J. Response of soils to sodic and saline conditions. Hilgardia 1984, 52, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.; Rao, D.L.N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 1998, 30, 695–702. [Google Scholar] [CrossRef]
- Batra, L.; Manna, M.C. Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions. Arid Soil Res. Rehab. 1997, 11, 295–303. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Bingham, F.T. Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J. 1982, 46, 1173–1177. [Google Scholar] [CrossRef]
- Laura, R.D. Effects of sodium carbonate on carbon and nitrogen mineralization of organic matter added to soil. Geoderma 1973, 9, 15–26. [Google Scholar] [CrossRef]
Coal | Calorific Value | T-Moisture 1 | Proximate Analysis (% db 2) | Ultimate Analysis (wt% daf 3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(MJ/kg) | (%) | Moisture | Ash | VM 4 | Fixed C | C | H | N | O | S | |
A | 22.9 | 6.0 | 0.9 | 23.3 | 14.2 | 51.9 | 85.3 | 4.7 | 1.1 | 3.2 | 2.1 |
B | 8.1 | 3.0 | 1.6 | 70.4 | 11.8 | 17.4 | 68.1 | 5.4 | 1.0 | 3.4 | 4.1 |
Field | CBB Ash | Pig Manure 3 | Application Rate (CBB Ash) 4 (tha−1 (%)) |
---|---|---|---|
F1 | A 1 | + | 0(0), 11.6(0.5), 23.2(1.0), 46.4(2.0), 69.6(3.0) |
F2 | A 1 | − | |
F3 | B 2 | + | |
F4 | B 2 | − |
C | N | C/N | Particles | Soil Texture 1 | Bulk Density | pH | CEC | EC | ESP 2 | Soluble Cations and Anions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | Na+ | Ca2+ | Mg2+ | K+ | HCO3− | CO32– | Cl− | SO42– | |||||||||
(%) | (-) | (%) | (kg m−3) | (-) | (cmol kg−1) | (dS m−1) | (%) | (cmol L−1) | |||||||||||
0.66 | 0.0205 | 32.2 | 85.0 | 8.9 | 6.1 | LS | 1530 | 9.7 | 13.3 | 0.30 | 7.2 | 2.57 | 0.24 | 0.11 | 0.02 | 0.70 | 0.09 | 0.09 | 0.20 |
CBB Ash | C | N | C/N | Diameter (%) | pH | EC | CEC | ESP 1 | Soluble Cations (cmol L−1) | Exchangeable Cations (cmol kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (-) | <1.0 | 1.0–2.0 (mm) | >2.0 | (-) | (dS m−1) | (cmol kg−1) | (%) | Na+ | Ca2+ | Mg2+ | K+ | Na+ | Ca2+ | Mg2+ | K+ | |
A | 3.76 | 0.0703 | 53.5 | 60.7 | 3.7 | 35.6 | 8.5 | 2.3 | 23.3 | 7.3 | 0.23 | 9.56 | 1.35 | 0.79 | 1.69 | 19.4 | 1.49 | 0.71 |
B | 5.73 | 0.126 | 45.7 | 51.2 | 9.5 | 10.9 | 10.9 | 2.4 | 44.3 | 4.5 | 0.83 | 10.0 | 0.99 | 1.82 | 1.97 | 35.5 | 6.03 | 0.86 |
AR (%) | CAFT_S | ∆CAM_CBB | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |
0 | 34.1 ± 8.2 a | 31.6 ± 3.3 a | 34.2 ± 2.1 a | 30.5 ± 1.7 a | - | - | - | - |
0.5 | 41.3 ± 5.6 b | 27.7 ± 3.9 b | 37.0 ± 6.2 a | 31.5 ± 4.1 a | 8.4 ± 3.9 (23) | −4.8 ± 2.5 (25) | - | - |
1.0 | 35.5 ± 8.5 a | 34.0 ± 4.1 a | 32.1 ± 2.2 b | 32.7 ± 3.6 a | - | - | −4.0 ± 2.2 (24) | - |
2.0 | 44.4 ± 15.6 a | 33.9 ± 5.8 a | 35.9 ± 5.4 a | 40.1 ± 5.5 b | - | - | - | 9.2 ± 1.9 (21) |
3.0 | 39.2 ± 13.4 a | 34.4 ± 3.4 a | 44.0 ± 5.5 c | 50.2 ± 6.4 c | - | - | 7.5 ± 7.1 (22) | 15.7 ± 7.4 (27) |
AR (%) | NAFT_S | ∆NAM_CBB | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |
0 | 1.77 ± 0.72 a | 2.34 ± 0.95 a | 2.00 ± 0.33 a | 1.89 ± 0.31 a | - | - | - | - |
0.5 | 2.68 ± 1.11 b | 1.87 ± 1.09 a | 2.19 ± 0.32 ab | 2.01 ± 0.46 a | 1.72 ± 0.94 (18) | - | - | - |
1.0 | 2.10 ± 0.85 a | 2.16 ± 0.62 a | 1.95 ± 0.29 a | 2.03 ± 0.52 a | - | - | - | - |
2.0 | 2.49 ± 1.07 a | 2.35 ± 0.59 a | 2.23 ± 0.31 ab | 2.04 ± 0.38 a | - | - | - | - |
3.0 | 2.01 ± 0.96 a | 2.06 ± 0.35 a | 2.42 ± 0.31 b | 2.12 ± 0.42 a | - | - | 0.43 ± 0.19 (22) | - |
AR (%) | ∆CAM_CBBPM | ∆NAM_CBBPM | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |
0 | 16.8 ± 8.2 a | 16.4 ± 3.3 a | 16.8 ± 2.1 a | 15.3 ± 1.7 a | 1.11 ± 0.72 a | 1.87 ± 0.95 a | 1.33 ± 0.33 a | 1.41 ± 0.31 a |
0.5 | 23.6 ± 5.6 b | 12.1 ± 3.9 b | 19.0 ± 6.2 a | 15.7 ± 4.1 a | 2.01 ± 1.11 b | 1.39 ± 1.09 a | 1.51 ± 0.32 ac | 1.52 ± 0.46 a |
1.0 | 17.3 ± 8.5 a | 18.0 ± 4.1 a | 13.4 ± 2.2 b | 16.2 ± 3.6 a | 1.42 ± 0.85 a | 1.67 ± 0.62 a | 1.26 ± 0.29 ad | 1.53 ± 0.52 a |
2.0 | 25.4 ± 15.6 a | 17.0 ± 5.8 a | 15.9 ± 5.4 a | 22.3 ± 5.5 b | 1.79 ± 1.07 a | 1.84 ± 0.59 a | 1.51 ± 0.31 ac | 1.51 ± 0.38 a |
3.0 | 19.3 ± 13.4 a | 16.7 ± 3.4 a | 22.7 ± 5.5 c | 31.9 ± 6.4 c | 1.30 ± 0.96 a | 1.54 ± 0.35 a | 1.66 ± 0.31 b | 1.57 ± 0.42 a |
AR | Prod | pH | EC | Mg2+ | Ca2+ | Na+ | K+ | Cl− | SO42− | HCO3− | CO32− | SAR | ESP | N | C/N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | - | 0.476 ** | −0.670 ** | - | 0.537 ** | 0.536 ** | −0.473 ** | - | −0.669 ** | - | - | - | −0.381 ** | −0.395 ** | 0.903 ** | −0.680 ** |
F2 | 0.330 * | 0.440 ** | −0.610 ** | −0.654 ** | - | - | −0.815 ** | 0.824 ** | −0.797 ** | - | - | - | −0.665 ** | −0.682 ** | 0.822 ** | −0.789 ** |
F3 | 0.489 ** | 0.455 ** | −0.809 ** | - | 0.467 ** | 0.453 ** | −0.711 ** | 0.824 ** | −0.804 ** | 0.424 ** | −0.316 * | −0.825 ** | −0.713 ** | −0.704 ** | 0.878 ** | −0.630 ** |
F4 | 0.832 ** | 0.667 ** | −0.813 ** | 0.396 ** | 0.527 ** | 0.488 ** | −0.762 ** | 0.720 ** | −0.642 ** | 0.419 ** | −0.398 ** | −0.427 ** | −0.670 ** | −0.617 ** | 0.720 ** | −0.274 * |
F1–4 | 0.391 ** | 0.436 ** | −0.418 ** | 0.205 ** | 0.358 ** | 0.342 ** | −0.385 ** | - | −0.445 ** | 0.286 ** | −0.230 ** | −0.205 ** | −0.366 ** | −0.351 ** | 0.701 ** | −0.260 ** |
AR | Prod | pH | EC | Mg2+ | Ca2+ | Na+ | K+ | Cl− | SO42− | HCO3− | CO32− | SAR | ESP | C/N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | - | 0.514 ** | −0.779 ** | - | 0.465 ** | 0.558 ** | −0.549 ** | - | −0.659 ** | - | - | - | −0.474 ** | −0.490 ** | −0.807 ** |
F2 | - | - | −0.536 ** | −0.515 ** | - | - | −0.666 ** | 0.662 ** | −0.671 ** | - | −0.292 * | - | −0.558 ** | −0.572 ** | −0.856 ** |
F3 | 0.373 * | 0.371 * | −0.894 ** | - | 0.378 ** | 0.396 ** | −0.831 ** | 0.891 ** | −0.854 ** | 0.336 * | −0.359 ** | −0.892 ** | −0.820 ** | −0.808 ** | −0.864 ** |
F4 | - | - | −0.742 ** | - | 0.355 ** | 0.343 * | −0.641 ** | 0.830 ** | −0.746 ** | 0.324 * | - | - | −0.454 ** | −0.458 ** | −0.784 ** |
F1–4 | - | 0.306 ** | −0.337 ** | - | - | 0.156 * | −0.431 ** | - | −0.477 ** | - | −0.222 ** | −0.237 ** | −0.378 ** | −0.384 ** | −0.731 ** |
AR | Prod | pH | EC | Mg2+ | Ca2+ | Na+ | K+ | Cl− | SO42− | HCO3− | CO32− | SAR | ESP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | - | −0.315 * | 0.590 ** | - | - | - | 0.525 ** | - | 0.732 ** | - | - | - | 0.339 * | 0.353 ** |
F2 | - | - | 0.543 ** | 0.549 ** | - | - | 0.753 ** | −0.833 ** | 0.831 ** | - | - | - | 0.591 ** | 0.611 ** |
F3 | - | - | 0.858 ** | - | - | - | 0.837 ** | −0.875 ** | 0.805 ** | - | 0.327 * | 0.876 ** | 0.796 ** | 0.812 ** |
F4 | 0.677 ** | 0.554 ** | 0.544 ** | - | - | - | 0.369 ** | −0.754 ** | 0.711 ** | - | - | - | - | - |
F1–4 | 0.249 ** | - | 0.301 ** | 0.231 ** | - | - | 0.412 ** | - | 0.549 ** | - | - | 0.188 ** | 0.288 ** | 0.311 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, Y.; Nakamura, M.; Wang, C. Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China. Minerals 2020, 10, 1019. https://doi.org/10.3390/min10111019
Sakai Y, Nakamura M, Wang C. Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China. Minerals. 2020; 10(11):1019. https://doi.org/10.3390/min10111019
Chicago/Turabian StyleSakai, Yuji, Masataka Nakamura, and Chang Wang. 2020. "Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China" Minerals 10, no. 11: 1019. https://doi.org/10.3390/min10111019
APA StyleSakai, Y., Nakamura, M., & Wang, C. (2020). Soil Carbon Sequestration Due to Salt-Affected Soil Amelioration with Coal Bio-Briquette Ash: A Case Study in Northeast China. Minerals, 10(11), 1019. https://doi.org/10.3390/min10111019