Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project
Abstract
:1. Introduction
2. Site Characteristics of Shenhua CCS Demonstration Project
3. Modelling Approach
3.1. Numerical Tool
3.2. Model Description
3.3. Initial Mineralogy and Water Geochemistry
3.4. Simulation Scenarios
4. Results and Discussion
4.1. Distribution of Gaseous CO2, Dissolved CO2 and Mineralised CO2 within the Caprock
4.2. Evolution of the Sealing Capacity of Caprock
4.3. Analysis of Self-Sealing and Self-Dissolution for Caprock Alteration
4.4. Sensitivity Analyses
4.4.1. Influence of Mineral Composition
4.4.2. Influence of Formation Temperature
4.4.3. Influence of Salinity
5. Conclusions
- (1)
- The CO2 gas migrates upward under the action of formation pressure, buoyancy and injection pressure over time, then gradually decreases due to dissolution and the formation of carbonate minerals. Gaseous CO2 does not break through the caprock and is always enclosed in the caprock during the simulation time. Mineralized CO2 increases gradually from 100 years to the end of the simulation that is favorable for caprock sealing.
- (2)
- The self-sealing phenomenon occurs in the lower part of the caprock dominated by the precipitation of dawsonite, magnesite, siderite, Ca-smectite and illite during long-term CO2-water-rock geochemical reactions, which is favorable for enhancing the sealing capacity of the caprock. On the contrary, self-dissolution occurs in the upper part of caprock mainly due to the dissolution of kaolinite, K-feldspar, chlorite and Ca-smectite, which may decrease the sealing capacity of caprock.
- (3)
- The precipitation of dawsonite, magnesite, siderite and other carbonate minerals can reduce or even close advection pathways with albite and chlorite providing Na+, Mg2+ and Fe2+, which is highly advantageous, leading to self-sealing of the caprock. K-feldspar and albite are the key minerals causing the self-dissolution and self-sealing of the caprock. The dissolution of K-feldspar dominates illite precipitation by providing required K+, and albite affects the precipitation of Ca-smectite. When K-feldspar is absent as a primary mineral, the self-dissolution is weakened in the upper part of the caprock, and the self-sealing is obviously enhanced with mineralized CO2 increasing in the lower part of the caprock, which is favorable for long-term CO2 storage. When albite is absent, the self-dissolution of the caprock is enhanced, and self-sealing is weakened with mineralized CO2 decreasing, which is not conducive to long-term CO2 storage.
- (4)
- Formation temperature has a great effect on the sealing capacity of caprock. The self-sealing and self-dissolution of caprock are enhanced with increasing temperature because the kinetic reaction rate of minerals increases greatly with the increase of temperature strengthening the dissolution and precipitation of minerals. Meanwhile, the upward migration distance of gaseous CO2 in the caprock decreases with increasing temperature due to the accelerated geochemical process of CO2, caprock and brine. However, the self-dissolution in the upper part of the caprock is enhanced significantly due to the high temperature that may result in a decrease of the sealing capacity of the caprock. The effect of salinity on the caprock sealing and mineralized CO2 is negligible in this study mainly because the salinity level of the formation water in the Heshanggou Formation is so low.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bachu, S. Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers. Manag. 2002, 43, 87–102. [Google Scholar] [CrossRef]
- Benson, S.M.; Cole, D.R. CO2 Sequestration in Deep Sedimentary Formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Randolph, J.B.; Saar, M.O. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys. Res. Lett. 2011, 38, L10401. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, Z.; Zhang, J.; Liu, L.; Li, X.; Jia, L. Positioning and revision of CCUS technology development in China. Int. J. Greenh. Gas Control 2016, 46, 282–293. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhou, L.; Gao, R.; Luo, T.; Wang, H.; Wang, H.; McLaughlin, F.; Bentley, R.; Quillinan, S. Opportunity and challenges of integrated enhanced oil recovery using CO2 flooding with geological CO2 storage in the Ordos Basin, China. Energy Procedia 2014, 63, 7761–7771. [Google Scholar] [CrossRef] [Green Version]
- Gaus, I.; Azaroual, M.; Czernichowski-Lauriol, I. Reactive transport modelling of the impact of CO2 injection on the clayey caprock at Sleipner (North Sea). Chem. Geol. 2005, 217, 319–337. [Google Scholar] [CrossRef]
- Dance, T.; Spencer, L.; Xu, J.-Q. Geological characterisation of the Otway project pilot site: What a difference a well makes. Energy Procedia 2009, 1, 2871–2878. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Vasco, D.W.; Myer, L. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int. J. Greenh. Gas Control 2010, 4, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Rostron, B.; Whittaker, S. 10+ years of the IEA-GHG Weyburn-Midale CO2 monitoring and storage project: Successes and lessons learned from multiple hydrogeological investigations. Energy Procedia 2011, 4, 3636–3643. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Kharaka, Y.K.; Thordsen, J.J.; Horita, J.; Karamalidis, A.; Griffith, C.; Hakala, J.A.; Ambats, G.; Cole, D.R.; Phelps, T.J.; et al. CO2–rock–brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, USA. Chem. Geol. 2012, 291, 269–277. [Google Scholar] [CrossRef]
- Wu, X. Carbon Dioxide Capture and Geological Storage: The First Massive Exploration in China; Science Press: Beijing, China, 2013. [Google Scholar]
- Gaus, I. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 2010, 4, 73–89. [Google Scholar] [CrossRef]
- Boulin, P.F.; Bretonnier, P.; Vassil, V.; Samouillet, A.; Fleury, M.; Lombard, J.M. Sealing efficiency of caprocks: Experimental investigation of entry pressure measurement methods. Mar. Pet. Geol. 2013, 48, 20–30. [Google Scholar] [CrossRef]
- Park, J.; Yang, M.; Kim, S.; Lee, M.; Wang, S. Estimates of scCO2 Storage and Sealing Capacity of the Janggi Basin in Korea Based on Laboratory Scale Experiments. Minerals 2019, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Jayasekara, D.W.; Ranjith, P.G.; Wanniarachchi, W.A.M.; Rathnaweera, T.D. Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study. J. Supercrit. Fluids 2020, 161, 104819. [Google Scholar] [CrossRef]
- Liu, F.; Lu, P.; Griffith, C.; Hedges, S.W.; Soong, Y.; Hellevang, H.; Zhu, C. CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. Int. J. Greenh. Gas Control 2012, 7, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Zhang, D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ. Sci. Technol. 2013, 47, 9–22. [Google Scholar] [CrossRef]
- Iglauer, S.; Pentland, C.H.; Busch, A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour. Res. 2015, 51, 729–774. [Google Scholar] [CrossRef] [Green Version]
- Szabó, Z.; Hellevang, H.; Király, C.; Sendula, E.; Kónya, P.; Falus, G.; Török, S.; Szabó, C. Experimental-modelling geochemical study of potential CCS caprocks in brine and CO2-saturated brine. Int. J. Greenh. Gas Control 2016, 44, 262–275. [Google Scholar] [CrossRef]
- Dávila, G.; Luquot, L.; Soler, J.M.; Cama, J. Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions. Int. J. Greenh. Gas Control 2016, 48, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Jayasekara, D.W.; Ranjith, P.G.; Wanniarachchi, W.A.M.; Rathnaweera, T.D.; Van Gent, D. CO2-brine-caprock interaction: Reactivity experiments on mudstone caprock of South-west Hub geo-sequestration project. J. Pet. Sci. Eng. 2020, 189, 107011. [Google Scholar] [CrossRef]
- Kohler, E.; Parra, T.; Vidal, O. Clayey cap-rock behavior in H2O-CO2 media at low pressure and temperature conditions: An experimental approach. Clays Clay Miner. 2009, 57, 616–637. [Google Scholar] [CrossRef]
- Wollenweber, J.; Alles, S.; Busch, A.; Krooss, B.M.; Stanjek, H.; Littke, R. Experimental investigation of the CO2 sealing efficiency of caprocks. Int. J. Greenh. Gas Control 2010, 4, 231–241. [Google Scholar] [CrossRef]
- Alemu, B.L.; Aagaard, P.; Munz, I.A.; Skurtveit, E. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl. Geochem. 2011, 26, 1975–1989. [Google Scholar] [CrossRef]
- Rezaeyan, A.; Tabatabaei-Nejad, S.A.; Khodapanah, E.; Kamari, M. A laboratory study on capillary sealing efficiency of Iranian shale and anhydrite caprocks. Mar. Pet. Geol. 2015, 66, 817–828. [Google Scholar] [CrossRef]
- Wang, H.; Alvarado, V.; Smith, E.R.; Kaszuba, J.P.; Bagdonas, D.A.; McLaughlin, F.J.; Quillinan, S.A. Link between CO2-induced wettability and pore architecture alteration. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K. Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 2005, 217, 295–318. [Google Scholar] [CrossRef]
- Tian, H.; Xu, T.; Zhu, H.; Yang, C.; Ding, F. Heterogeneity in mineral composition and its impact on the sealing capacity of caprock for a CO2 geological storage site. Comput. Geosci. 2019, 125, 30–42. [Google Scholar] [CrossRef]
- Xiao, T.; Xu, H.; Moodie, N.; Esser, R.; Jia, W.; Zheng, L.; Rutqvist, J.; McPherson, B. Chemical-mechanical impacts of CO2 intrusion into heterogeneous caprock. Water Resour. Res. 2020. [Google Scholar] [CrossRef]
- Gherardi, F.; Xu, T.; Pruess, K. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chem. Geol. 2007, 244, 103–129. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Xu, T.; Li, Y.; Yang, Z.; Wang, F. Evolution of sealing efficiency for CO2 geological storage due to mineral alteration within a hydrogeologically heterogeneous caprock. Appl. Geochem. 2015, 63, 380–397. [Google Scholar] [CrossRef]
- Dávila, G.; Cama, J.; Luquot, L.; Soler, J.M.; Ayora, C. Experimental and modeling study of the interaction between a crushed marl caprock and CO2-rich solutions under different pressure and temperature conditions. Chem. Geol. 2017, 448, 26–42. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, H.; Feng, G.; Yang, Z.; Tian, H. Numerical simulation of calcite vein formation and its impact on caprock sealing efficiency—Case study of a natural CO2 reservoir. Int. J. Greenh. Gas Control 2019, 83, 29–42. [Google Scholar] [CrossRef]
- Ma, X.; Yang, G.; Li, X.; Yu, Y.; Dong, J. Geochemical modeling of changes in caprock permeability caused by CO2–brine–rock interactions under the diffusion mechanism. Oil Gas Sci. Technol. 2019, 74, 83. [Google Scholar] [CrossRef]
- Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 2006, 32, 145–165. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Atrens, A.; Liu, D.; Wang, Y.; Jia, L.; Lu, Y. Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS demonstration project, China. J. Earth Sci. 2017, 28, 457–472. [Google Scholar] [CrossRef]
- Ma, X.; Yang, G.; Yu, Y.; Li, X.; Liu, X. Effect of clay mineral contents on sealing capacity of caprock of CO2 geological storage. Bull. Miner. Pet. Geochem. 2019, 38, 121–129. (In Chinese) [Google Scholar]
- Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 2011, 37, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Wolery, T.J. Software Package for Geochemical Modeling of Aqueous System: Package Overview and Installation Guide (Version 8.0); Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I: Livermore, CA, USA, 1992. [Google Scholar]
- Yang, G.; Li, Y.; Ma, X.; Dong, J. Effect of chlorite on CO2-water-rock interaction. Earth Sci. J. China Univ. Geosci. 2014, 39, 462–472. (In Chinese) [Google Scholar]
- Wdowin, M.; Tarkowski, R.; Franus, W. Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2–brine–rock interactions. Int. J. Coal Geol. 2014, 130, 79–88. [Google Scholar] [CrossRef]
- Charlet, L.; Alt-Epping, P.; Wersin, P.; Gilbert, B. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Adv. Water Resour. 2017, 106, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Trémosa, J.; Castillo, C.; Vong, C.Q.; Kervévan, C.; Lassin, A.; Audigane, P. Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers: Application to Ketzin, In Salah and Snøhvit storage sites. Int. J. Greenh. Gas Control 2014, 20, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Lo Ré, C.; Kaszuba, J.P.; Moore, J.N.; McPherson, B.J. Fluid–rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models. Geochim. Cosmochim. Acta 2014, 141, 160–178. [Google Scholar] [CrossRef]
- Sundal, A.; Hellevang, H. Using reservoir geology and petrographic observations to improve CO2 mineralization estimates: Examples from the Johansen Formation, North Sea, Norway. Minerals 2019, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Mohd Amin, S.; Weiss, D.J.; Blunt, M.J. Reactive transport modelling of geologic CO2 sequestration in saline aquifers: The influence of pure CO2 and of mixtures of CO2 with CH4 on the sealing capacity of cap rock at 37 °C and 100 bar. Chem. Geol. 2014, 367, 39–50. [Google Scholar] [CrossRef]
- Moore, J.; Adams, M.; Allis, R.; Lutz, S.; Rauzi, S. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville–St. Johns Field, Arizona, and New Mexico, USA. Chem. Geol. 2005, 217, 365–385. [Google Scholar] [CrossRef]
- Okuyama, Y.; Todaka, N.; Sasaki, M.; Ajima, S.; Akasaka, C. Reactive transport simulation study of geochemical CO2 trapping on the Tokyo Bay model—With focus on the behavior of dawsonite. Appl. Geochem. 2013, 30, 57–66. [Google Scholar] [CrossRef]
- Tambach, T.J.; Koenen, M.; Wasch, L.J.; van Bergen, F. Geochemical evaluation of CO2 injection and containment in a depleted gas field. Int. J. Greenh. Gas Control 2015, 32, 61–80. [Google Scholar] [CrossRef]
- Smith, M.M.; Wolery, T.J.; Carroll, S.A. Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions. Chem. Geol. 2013, 347, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Fang, Q.; Ke, Y.; Dong, J.; Yang, G.; Ma, X. Effect of high salinity on CO2 geological storage: A case study of Qianjiang Depression in Jianghan Basin. Earth Sci. J. China Univ. Geosci. 2012, 37, 283–288. (In Chinese) [Google Scholar]
- Ranjith, P.G.; Perera, M.S.A.; Khan, E. A study of safe CO2 storage capacity in saline aquifers: A numerical study. Int. J. Energ. Res. 2013, 37, 189–199. [Google Scholar] [CrossRef]
- Jayasekara, D.W.; Ranjith, P.G.; Wanniarachchi, W.A.M.; Rathnaweera, T.D.; Chaudhuri, A. Effect of salinity on supercritical CO2 permeability of caprock in deep saline aquifers: An experimental study. Energy 2020, 191, 116486. [Google Scholar] [CrossRef]
Parameters | Formation | |
---|---|---|
Caprock | Reservoir | |
Porosity | 0.03 | 0.114 |
Horizontal permeability (10−15 m2) | 0.25 | 4.5 |
Vertical permeability (10−15 m2) | 0.025 | 0.45 |
Pore compressibility (Pa−1) | 4.5 × 10−10 | 4.5 × 10−10 |
Rock grain density (kg/m3) | 2600 | 2600 |
Formation heat conductivity (W/m °C) | 2.51 | 2.51 |
Rock grain specific heat (J/kg °C) | 920 | 920 |
Temperature (°C) | 53 | 53 |
Pressure (MPa) | 14.5–15.0 | 15.5 |
Salinity (mass fraction) | 0.016 | 0.046 |
Relative permeability | ||
Liquid (van Genuchten, 1980) | ||
. | ||
Residual liquid saturation | = 0.30 | |
Exponent | m = 0.457 | |
Gas (Corey, 1954) | ||
Residual gas saturation | = 0.05 | |
Capillary pressure (van Genuchten, 1980) | ||
Residual liquid saturation | = 0.20 | |
Exponent | m = 0.457 | |
P0 (MPa) | 2.0 | 1.0 |
Pmax (MPa) | 100 | 10 |
Mineral | Chemical Composition | Volume Fraction (%) of Solid Rock | |
---|---|---|---|
Caprock | Reservoir | ||
Primary | |||
Illite | K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 | 11.0 | 15.6 |
Kaolinite | Al2Si2O5(OH) | 3.8 | 4.7 |
Ca-smectite | Ca0.145Mg0.26Al1.77Si3.97O10(OH)2 | 10.3 | 5.4 |
Chlorite | Mg2.5Fe2.5Al2Si3O10(OH)8 | 4.9 | 4.2 |
Quartz | SiO2 | 30.0 | 33.5 |
K-feldspar | KAlSi3O8 | 7.0 | 10.5 |
Albite | NaAlSi3O8 | 8.0 | 15.0 |
Calcite | CaCO3 | 2.2 | 9.0 |
Oligoclase | CaNa4Al6Si14O40 | 0 | 2.0 |
Secondary | |||
Anhydrite | CaSO4 | ||
Pyrite | FeS2 | ||
Hematite | Fe2O3 | ||
Siderite | FeCO3 | ||
Ankerite | CaMg0.3Fe0.7(CO3)2 | ||
Dawsonite | NaAlCO3(OH)2 | ||
Magnesite | MgCO3 | ||
Dolomite | CaMg(CO3)2 | ||
Halite | NaCl |
Component | Caprock | Reservoir |
---|---|---|
Ca2+ | 9.424 × 10−2 | 3.628 × 10−1 |
Mg2+ | 1.495 × 10−2 | 3.728 × 10−2 |
Na+ | 1.620 × 10−1 | 3.398 × 10−1 |
K+ | 9.256 × 10−4 | 8.756 × 10−4 |
Fe | 6.107 × 10−5 | 4.000 × 10−5 |
SiO2(aq) | 1.783 × 10−4 | 1.967 × 10−5 |
C | 3.308 × 10−3 | 4.134 × 10−4 |
SO42− | 2.141 × 10−2 | 2.161 × 10−2 |
Cl− | 3.467 × 10−1 | 1.119 |
pH | 6.94 | 5.35 |
Simulation Scenarios | Variable Changed | Alternative Value |
---|---|---|
Case 1.1 | Content of K-feldspar | 0 |
Case 1.2 | Content of albite | 0 |
Case 2.1 | Temperature (°C) | 63 |
Case 2.2 | 73 | |
Case 3.1 | Salinity (mass fraction) | 0.036 |
Case 3.2 | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Ma, X.; Feng, T.; Yu, Y.; Yin, S.; Huang, M.; Wang, Y. Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project. Minerals 2020, 10, 1009. https://doi.org/10.3390/min10111009
Yang G, Ma X, Feng T, Yu Y, Yin S, Huang M, Wang Y. Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project. Minerals. 2020; 10(11):1009. https://doi.org/10.3390/min10111009
Chicago/Turabian StyleYang, Guodong, Xin Ma, Tao Feng, Ying Yu, Shuguo Yin, Mian Huang, and Yongsheng Wang. 2020. "Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project" Minerals 10, no. 11: 1009. https://doi.org/10.3390/min10111009
APA StyleYang, G., Ma, X., Feng, T., Yu, Y., Yin, S., Huang, M., & Wang, Y. (2020). Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project. Minerals, 10(11), 1009. https://doi.org/10.3390/min10111009