Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition
Abstract
:1. Introduction
1.1. NH4+ Vibrational Modes
1.2. SO42−, PO43− and BO33−–BO45− Vibrational Modes
1.3. H2O and OH Vibrational Modes
2. Materials and Methods
2.1. Reflectance Measurements
2.2. X-ray Diffraction Measurements and Rietveld Analysis
2.3. Thermal Analysis
3. Results
3.1. Larderellite NH4B5O7(OH)2 H2O
3.2. Struvite NH4MgPO4·6H2O
3.3. Tschermigite (NH4)Al(SO4)2·12H2O
3.4. Mascagnite (NH4)2SO4
3.5. Sal-Ammoniac NH4Cl
4. Discussion
4.1. Sal-Ammoniac and Mascagnite Absorption Bands
4.2. Larderellite, Struvite and Tschermigite Absorption Bands
4.3. 1.58 μm Bands Complex
4.4. Low-Temperature Reflectance Spectra
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L. Relations of ammonium minerals at several hydrothermal systems in the western US. J. Volcanol. Geotherm. Res. 1993, 56, 401–413. [Google Scholar] [CrossRef]
- King, T.V.; Clark, R.N.; Calvin, W.M.; Sherman, D.M.; Brown, R.H. Evidence for ammonium-bearing minerals on Ceres. Science 1992, 255, 1551–1553. [Google Scholar] [CrossRef] [Green Version]
- De Sanctis, M.C.; Ammannito, E.; Raponi, A.; Marchi, S.; McCord, T.B.; McSween, H.Y.; Longobardo, A. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 2015, 528, 241. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.T.; Capaccioni, F.; Coradini, A.; De Sanctis, M.C.; Feldman, W.C.; Jaumann, R.; Pieters, C.M. Dawn mission to Vesta and Ceres. Earth Moon Planets 2007, 101, 65–91. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Mitri, G.; Castillo-Rogez, J.; House, C.H.; Marchi, S.; Raymond, C.A.; Sekine, Y. Relict Ocean Worlds: Ceres. Space Sci. Rev. 2020, 216. [Google Scholar] [CrossRef]
- Quinn, R.C.; Chittenden, J.D.; Kounaves, S.P.; Hecht, M.H. The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Sefton-Nash, E.; Catling, D.C.; Wood, S.E.; Grindrod, P.M.; Teanby, N.A. Topographic, spectral and thermal inertia analysis of interior layered deposits in Iani Chaos, Mars. Icarus 2012, 221, 20–42. [Google Scholar] [CrossRef] [Green Version]
- Owen, T.; Mahaffy, P.R.; Niemann, H.B.; Atreya, S.; Wong, M. Protosolar nitrogen. Astrophys. J. 2001, 553, L77–L79. [Google Scholar] [CrossRef]
- Poch, O.; Istiqomah, I.; Quirico, E.; Beck, P.; Schmitt, B.; Theulé, P.; Ciarniello, M. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 2020, 367, eaaw7462. [Google Scholar] [CrossRef] [PubMed]
- Stoks, P.G.; Schwartz, A.W. Nitrogen-heterocyclic compounds in meteorites: Significance and mechanisms of formation. Eochim. Cosmochim. Acta 1981, 45, 563–569. [Google Scholar] [CrossRef]
- Cook, J.C.; Desch, S.J.; Roush, T.L.; Trujillo, C.A.; Geballe, T.R. Near-infrared spectroscopy of Charon: Possible evidence for cryovolcanism on Kuiper belt objects. Astrophys. J. 2007, 663, 1406–1419. [Google Scholar] [CrossRef]
- Cook, J.C.; Dalle Ore, C.M.; Protopapa, S.; Binzel, R.P.; Cartwright, R.; Cruikshank, D.P.; Jennings, D.E. Composition of Pluto’s small satellites: Analysis of New Horizons spectral images. Icarus 2018, 315, 30–45. [Google Scholar] [CrossRef]
- Dalle Ore, C.M.; Protopapa, S.; Cook, J.C.; Grundy, W.M.; Cruikshank, D.P.; Verbiscer, A.J.; Young, L.A. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus 2018, 300, 21–32. [Google Scholar] [CrossRef]
- Dalle Ore, C.M.; Cruikshank, D.P.; Protopapa, S.; Scipioni, F.; McKinnon, W.B.; Cook, J.C.; Verbiscer, A. Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Sci. Adv. 2019, 5, eaav5731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spohn, T.; Schubert, G. Oceans in the icy Galilean satellites of Jupiter? Icarus 2003, 161, 456–467. [Google Scholar] [CrossRef]
- Khurana, K.K.; Kivelson, M.G.; Stevenson, D.J.; Schubert, G.; Russell, C.T.; Walker, R.J.; Polanskey, C. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 1998, 395, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C.; Khurana, K.K.; Kivelson, M.G. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 2000, 147, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Kivelson, M.G.; Khurana, K.K.; Kurth, W.S. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2018, 2, 459–464. [Google Scholar] [CrossRef]
- Fortes, A.D. Exobiological implications of a possible ammonia–water ocean inside Titan. Icarus 2000, 146, 444–452. [Google Scholar] [CrossRef]
- Balić-Žunić, T.; Garavelli, A.; Jakobsson, S.P.; Jonasson, K.; Katerinopoulos, A.; Kyriakopoulos, K.; Acquafredda, P. Fumarolic minerals: An overview of active European volcanoes. In Updates in Volcanology—From Volcano Modelling to Volcano Geology; IntechOpen: London, UK, 2016; pp. 267–322. [Google Scholar]
- Holloway, J.M.; Dahlgren, R.A. Nitrogen in rock: Occurrences and biogeochemical implications. Glob. Biogeochem. Cycles 2002, 16, 65-1–65-17. [Google Scholar] [CrossRef]
- Harlov, D.E.; Andrut, M.; Melzer, S. Characterization of NH4-phlogopite (NH4)(Mg3)[AlSi3O10](OH)2 and ND4-phlogopite (ND4)(Mg3)[AlSi3O10](OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra. Phys. Chem. Miner. 2001, 28, 77–86. [Google Scholar] [CrossRef]
- Plumb, R.C.; Hornig, D.F. Infrared Spectrum, X-ray Diffraction Pattern, and Structure of Ammonium Fluoride. J. Chem. Phys. 1955, 23, 947–953. [Google Scholar] [CrossRef]
- Schutte, C.J.H.; Heyns, A.M. Low-Temperature Studies. IV. The Phase Transitions of Ammonium Sulfate and Ammonium-d 4 Sulfate; the Nature of Hydrogen Bonding and the Reorientation of the NX4+ Ions. J. Chem. Phys. 1970, 52, 864–871. [Google Scholar] [CrossRef]
- Schlemper, E.O.; Hamilton, W.C. Neutron-Diffraction Study of the Structures of Ferroelectric and Paraelectric Ammonium Sulfate. Int. J. Chem. Phys. 1966, 44, 4498–4509. [Google Scholar] [CrossRef]
- Sekine, A.; Sumita, M.; Osaka, T.; Makita, Y. Ferroelectricity and dielectric relaxation in NH4Al(SO4)2·12H2O. J. Phys. Soc. Jpn. 1988, 57, 4004–4010. [Google Scholar] [CrossRef]
- Krohn, M.D.; Altaner, S.P. Near-infrared detection of ammonium minerals. Geophysics 1987, 52, 924–930. [Google Scholar] [CrossRef]
- Bishop, J.L.; Banin, A.; Mancinelli, R.L.; Klovstad, M.R. Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planet. Space Sci. 2002, 50, 11–19. [Google Scholar] [CrossRef]
- Berg, B.L.; Cloutis, E.A.; Beck, P.; Vernazza, P.; Bishop, J.L.; Takir, D.; Mann, P. Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus 2016, 265, 218–237. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Hodyss, R.; Bristow, T.F.; Rossman, G.R.; Ammannito, E.; De Sanctis, M.C.; Raymond, C.A. Ambient and cold-temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other solar system bodies. Meteorit. Planet. Sci. 2018, 53, 1884–1901. [Google Scholar] [CrossRef] [Green Version]
- Pasek, M.A.; Mousis, O.; Lunine, J.I. Phosphorus chemistry on Titan. Icarus 2011, 212, 751–761. [Google Scholar] [CrossRef]
- Scorei, R. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Orig. Life Evol. Biosph. 2012, 42, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Gasda, P.J.; Haldeman, E.B.; Wiens, R.C.; Rapin, W.; Bristow, T.F.; Bridges, J.C.; Lanza, N.L. In situ detection of boron by ChemCam on Mars. Geophys. Res. Lett. 2017, 44, 8739–8748. [Google Scholar] [CrossRef]
- Hedman, M.M. Using cosmogenic Lithium, Beryllium and Boron to determine the surface ages of icy objects in the outer solar system. Icarus 2019, 330, 1–4. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; Wiley-Interscience: New York, NY, USA, 2008. [Google Scholar]
- Wagner, E.L.; Hornig, D.F. The Vibrational Spectra of Molecules and Complex Ions in Crystals III. Ammonium Chloride and Deutero-Ammonium Chloride. J. Chem. Phys. 1950, 18, 296–304. [Google Scholar] [CrossRef]
- Busigny, V.; Cartigny, P.; Philippot, P.; Javoy, M. Quantitative analysis of ammonium in biotite using infrared spectroscopy. Am. Miner. 2004, 89, 1625–1630. [Google Scholar] [CrossRef]
- Ross, S.D. Sulfates and Other Oxy-Anions of Group VI. In The Infrared Spectra of Minerals; Farmer, V.C., Ed.; Mineralogical Society: London, UK, 1974; pp. 423–444. [Google Scholar]
- Cooper, C.D.; Mustard, J.F. Spectroscopy of loose and cemented sulphate bearing soils: Implications for duricrust on Mars. Icarus 2002, 158, 42–55. [Google Scholar] [CrossRef]
- Stefov, V.; Šoptrajanov, B.; Spirovski, F.; Kuzmanovski, I.; Lutz, H.D.; Engelen, B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate. J. Mol. Struct. 2004, 689, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Peking University. Vibrational Spectra and Structure of Polyatomic Molecules; Edwards, J.W., Ed.; National University of Peking: Kunming, China, 1946. [Google Scholar]
- Kolesov, B.A.; Geiger, C.A. The orientation and vibrational states of H2O in synthetic alkali-free beryl. Phys. Chem. Miner. 2000, 27, 557–564. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Space Phys. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Yamatera, H.; Fitzpatrick, B.; Gordon, G. Near infrared spectra of water and aqueous solutions. J. Mol. Spectrosc. 1964, 14, 268–278. [Google Scholar] [CrossRef]
- Bayly, J.; Kartha, V.; Stevens, W. The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm. Infrared Phys. 1963, 3, 211–223. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Hawthorne, F.C.; Stanley, A.; Mertzman, K.K.; Michael, A.C.; Dionne, M.; Michelle Methot, J.S.; John, F.M.; Diana, L.B.; James, F.B., III; et al. Detection and discrimination of sulphate minerals using reflectance spectroscopy. Icarus 2006, 184, 121–157. [Google Scholar] [CrossRef]
- Moenke, H.H.W. Vibrational spectra and the crystal-chemical classification of minerals. In The Infrared Spectra of Minerals; Farmer, V.C., Ed.; Mineralogical Society: London, UK, 1974; pp. 111–118. [Google Scholar]
- Bishop, J.L.; Dyar, M.D.; Lane, M.D.; Banfield, J.F. Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. Int. J. Astrobiol. 2004, 3, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Maturilli, A.; Helbert, J.; Arnold, G. The newly improved set-up at the Planetary Spectroscopy Laboratory (PSL). In Infrared Remote Sensing and Instrumentation XXVII; SPIE Optical Engineering Applications: San Diego, CA, USA, 2019; Volume 11128, p. 111280T. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. Generalized Structure Analysis System; University of California: San Diego, CA, USA, 1988. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Differ. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Sergeeva, A.; Zhitova, E.S.; Bocharov, V.N. Infrared and Raman spectroscopy of tschermigite, (NH4)Al(SO4)2∙12H2O. Vib. Spectrosc. 2019, 105, 102983. [Google Scholar] [CrossRef]
- Korybska-Sadło, I.; Sitarz, M.; Król, M.; Bartz, W.; Prell, M.; Gunia, P. Spectroscopic characterization of rare hydrated ammonium borate mineral larderellite. J. Mol. Struct. 2018, 1159, 226–232. [Google Scholar] [CrossRef]
- Merlino, S.; Sartori, F. The crystal structure of larderellite, NH4B5O7(OH)2·H2O. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 2264–2270. [Google Scholar] [CrossRef]
- Waclawska, I. Structural mechanism of thermal reactions of larderellite. J. Alloy. Compd. 1997, 257, 191–195. [Google Scholar] [CrossRef]
- Ferraris, G.; Fuess, H.; Joswig, W. Neutron diffraction study of MgNH4PO4·6H2O (struvite) and survey of water molecules donating short hydrogen bonds. Acta Cryst. B 1986, 42, 253–258. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L.; Erickson, K.L. Thermal decomposition of struvite. J. Therm. Anal. Calorim. 2004, 76, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Bayuseno, A.P.; Schmahl, W.W. Thermal decomposition of struvite in water: Qualitative and quantitative mineralogy analysis. Environ. Technol. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, A.M.; Will, G.; Schäfer, W.; Kirfel, A.; Bargouth, M.O.; Recker, K. X-ray and neutron diffraction study of alums. Z. Krist. 1981, 157, 147–166. [Google Scholar]
- Lim, A.R.; Moon, H.G.; Chang, J.H. Nuclear magnetic resonance study of the phase transitions and local environments of α-alum NH4Al (SO4)2·12H2O single crystals. Chem. Phys. 2010, 371, 91–95. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Sergeeva, A.V.; Nuzhdaev, A.A.; Krzhizhanovskaya, M.G.; Chubarov, V.M. Tschermigite from thermal fields of Southern Kamchatka: High-temperature transformation and peculiarities of IR-spectrum. Zapiski RMO (RMS) 2019, 148, 100–116. [Google Scholar] [CrossRef]
- López-Beceiro, J.J.; Pascual-Cosp, J.; Artiaga, R.; Tarrío-Saavedra, J.; Naya, S. Thermal characterization of ammonium alum. J. Therm. Anal. Calorim. 2010, 104, 127–130. [Google Scholar] [CrossRef]
- Sirdeshmukh, D.B.; Deshpande, V.T. X-ray measurement of the thermal expansion of ammonium chloride. Acta Cryst. A 1970, 26, 295. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, B.K. Refinement of the structure of the group NH4 in the structure of ammonium chloride. Dokl. Akad. Nauk SSSR 1956, 12, 18–24. [Google Scholar]
- Wang, C.H.; Wright, R.B. Raman scattering study of the effect of pressure and temperature on the order-disorder phase transition in ammonium chloride. Int. J. Chem. Phys. 1974, 60, 849–854. [Google Scholar] [CrossRef]
- Shimada, S.; Katsuda, Y.; Inagaki, M. A study on phase transition of CsCl ⇌ NaCl in CsCl, NH4Cl and NH4Br by simultaneous AE-DTA measurement. Thermochim. Acta 1995, 267, 405–413. [Google Scholar] [CrossRef]
- Lane, M.D. Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. Am. Miner. 2007, 92, 1–18. [Google Scholar] [CrossRef]
- Felzer, B.; Hauff, P.; Goetz, A.F.H. Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada. J. Geophys. Res. Space Phys. 1994, 99, 2887–2895. [Google Scholar] [CrossRef]
- De Angelis, S.; Carli, C.; Tosi, F.; Beck, P.; Brissaud, O.; Schmitt, B.; Potin, S.; De Sanctis, M.C.; Capaccioni, F.; Piccioni, G. NIR reflectance spectroscopy of hydrated and anhydrous sodium carbonates at different temperatures. Icarus 2019, 317, 388–411. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Ammannito, E.; Raponi, A.; Frigeri, A.; Ferrari, M.; Carrozzo, F.G.; Zambon, F. Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astr. 2020, 4, 786–793. [Google Scholar] [CrossRef]
Minerals Name | Chemical Formula | Source |
---|---|---|
Larderellite | NH4B5O7OH2·H2O | Larderello, Italy |
Struvite | (NH4)MgPO4·6(H2O) | Limfjord, Denmark |
Tschermigite | (NH4)Al(SO4)2·12(H2O) | Cermniky, Czech Republic |
Mascagnite | (NH4)SO4 | Pozzuoli, Italy |
Sal-ammoniac | NH4Cl | Pozzuoli, Italy |
Mineral Name | NH4 Fundamentals | NH4 Overtone and Combination | |||||||
---|---|---|---|---|---|---|---|---|---|
ν3 | ν4 | 2ν3 + ν4 | 2ν3 | ν3 + ν4 | ν2 + ν4 | ν2 + ν5 | ν2 + ν6 | ν2 + ν3 | |
Larderellite NH4B5O7(OH)2 H2O | 5.84 6.97 7.35 | 1.54/H2O 2.42 2.58 | 1.98 2.02 2.10/N-OH 2.23 | 3.23/ ν1 H2O | |||||
Struvite NH4MgPO4·6H2O | 5.88 6.86 7.26 | 1.40 | 1.59 | 1.92 2.01 2.15/ PO43− | 3.21/ ν1 H2O | ||||
Tschermigite (NH4)Al(SO4)2·12H2O | 2.99/ν1 H2O | 5.90 6.84 | 1.51 2.52 | 2.14/ H2O | |||||
Mascagnite (NH4)2SO4 | 3.01/ν1 H2O | 5.90 6.72 7.22 | 1.59 | 2.13 | 3.23 | 4.86/2ν1 NH4+ | |||
Sal-ammoniac NH4Cl | 3.07 | 6.88 7.30 | 1.32 | 1.62 | 2.09 2.15 | 3.25 | 5.64 | 4.96 | 2.06 |
Mineral | OH Bands (µm) | H2O Bands (µm) | SO42− Bands (µm) | BO Bands (µm) | PO43− (µm) | |||||
---|---|---|---|---|---|---|---|---|---|---|
ν1 | ν3 | ν4 | ν2[BO3]3− | ν2 [BO4]5− | ν3 [BO4]5− | Overtone PO43− | ν3 PO43− | |||
Larderellite | 1.54 1.77 1.98 2.02 2.14 8.03 δ B–O–H 8.84 δ B–O–H | 3.23 6.16 | 12.52 13.31 | 14.11 12.58 13.26 14.15 15.32 | 9.3 10.3 11.13 11.40 | |||||
Struvite | 1.46 1.59 1.84 1.95 2.03 2.16 | 3.21 6.31 | 3.88 4.78 | 8.54 9.52 10.9 | ||||||
Tschermigite | 1.80 2.02 2.14 | 4.05 H2O-Al 10.79 H2O-Al 13.57 H2O-Al 15.69 H2O-Al | 7.83 9.03 | |||||||
Mascagnite | 9.54 10.27 | 8.35 8.43 | 15.73 | |||||||
Sal-ammoniac | 7.58 Unspecified feature |
Sample | Band’s Position | Absorption | Centroid vs. Td |
---|---|---|---|
Larderellite | 1.54 | H2O/NH4+ | ↑ λ |
1.76 | H2O | ↑ λ | |
2.10 | H2O/NH4+ | ↓ λ | |
2.42 | NH4+ | ↓ λ | |
2.58 | NH4+ | ↓ λ | |
Struvite | 1.44 | H2O | ↑ λ |
1.59 | H2O/NH4+ | ↓ λ | |
1.92 | H2O/NH4+ | ↓ λ | |
2.01 | H2O/NH4+ | ↑ λ | |
2.15 | H2O/NH4+ | ↑ λ | |
Tschermigite | 1.51 | NH4+ | ↓ λ |
1.76 | H2O | ↑ λ | |
2.07 | H2O/NH4+ | ↓ λ | |
2.52 | NH4+ | ↓ λ | |
Mascagnite | 1.59 | NH4+ | ↓ λ |
2.13 | NH4+ | ↓ λ | |
Sal-ammoniac | 1.32 | NH4+ | ↓ λ |
1.62 | NH4+ | ↓ λ | |
2.15 | NH4+ | ↓ λ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fastelli, M.; Comodi, P.; Maturilli, A.; Zucchini, A. Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition. Minerals 2020, 10, 902. https://doi.org/10.3390/min10100902
Fastelli M, Comodi P, Maturilli A, Zucchini A. Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition. Minerals. 2020; 10(10):902. https://doi.org/10.3390/min10100902
Chicago/Turabian StyleFastelli, Maximiliano, Paola Comodi, Alessandro Maturilli, and Azzurra Zucchini. 2020. "Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition" Minerals 10, no. 10: 902. https://doi.org/10.3390/min10100902
APA StyleFastelli, M., Comodi, P., Maturilli, A., & Zucchini, A. (2020). Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition. Minerals, 10(10), 902. https://doi.org/10.3390/min10100902