Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time
Abstract
:1. Introduction
2. Brief Description of the Deposits
Deposition *, Country | Province | Gold Content, Moz (Million Ounces) | Gold Content, Metric Tons | Age, Ma | Reference |
---|---|---|---|---|---|
Cenozoic | |||||
Valdez Group, USA | South-central Alaska | 0.26 | 8 | 50–55 | [6] |
Venus, Canada | Yukon Territory | <0.16 | <5 | 70 | [7] |
Monte Rosa gold district, Italy | Northwestern Alps | 0.5 | 15 | 20 | [8] |
Fairview, Oro Fino, Canada | Okanagan Valley, British Columbia | 2.2 | 68 | Tertiary | [9] |
Twin Lakes, Canada | Okanagan Valley, British Columbia | 0.01 | 0.27 | Tertiary | [9] |
Alaska-Juneau, USA | Juneau Gold Belt, Alaska | 3.4 | 106 | 55 | [10] |
Ibex, USA | Juneau Gold Belt, Alaska | <0.3 | <10 | 55 | [10] |
Reagan, USA | Juneau Gold Belt, Alaska | <0.3 | <10 | 55 | [10] |
Treadwell, USA | Juneau Gold Belt, Alaska | 3.1 | 96 | 55 | [10] |
Bralorne-Pioneer, Canada | British Columbia | 4.1 | 129 | 65 | [11] |
Monte Rosa gold district, Italy | Northwestern Alps | 0.5 | 15 | 24–32 | [12] |
Bralorne-Pioneer, Canada | British Columbia | 4.1 | 129 | 65 | [13] |
Callery, New Zealand | BDT | <0.16 | <5 | Quaternary | [14] |
Shotover, New Zealand | <0.16 | <5 | Miocene | [14] | |
Mt. Alta, New Zealand | <0.16 | <5 | Miocene | [14] | |
Nenthorn, New Zealand | <0.16 | <5 | Paleocene–Eocene | [14] | |
Böckstein, Austria | Northwestern Alps | <0.16 | <5 | Tertiary | [15] |
Monte Rosa gold district, Italy | Northwestern Alps | 0.5 | 15 | 24–32 | [15] |
Kensington, USA | Berners Bay District, Southeast Alaska | 1.9 | 60 | 55 | [16] |
Jualin, USA | Berners Bay District, Southeast Alaska | 0.3 | 9 | 55 | [16] |
Shannan area China | S. Tibet | 0.96 | 30 | Eocene | [17] |
Muteh, Iran | Zagros | 0.45 | 14 | 38.5–55.7 | [18] |
Zopkhito, Georgia Republic | Greater Caucasus | 1.8 | 55 | 4–5 | [19] |
La Herradura, Mexico | Northwestern Mexico | 5.4 | 168 | 61.0 ± 2.1 | [20] |
Daping, China | Yunnan Province | >4.8 | >150 | Cenozoic | [21] |
Mayum, China | Tibet | >2.6 | >80 | 59 | [22] |
Zhemulang, China | Lang County, Tibet | <0.16 | <5 | 12–35 | [23] |
Mazhala, China | Cuomei County, Tibet | <0.16 | <5 | 12–35 | [23] |
Qolqoleh, Iran | Sanandaj–Sirjan Zone, Kurdistan Province | <0.3 | <10 | Early Tertiary | [24] |
Bangbu, China | Southern Tibet | 1.3 | 40 | Cenozoic | [25] |
Mezocoic | |||||
Oriental mine, USA | California | 0.15 | 4.7 | 120 | [26] |
Big Hurrah, USA | Alaska | <0.3 | <1 | 110 | [27] |
Mouther Lode, USA | California | 1.7 | 53 | 125 | [28] |
Yata, China | Guizhou, Youjiang basin, S. China | 0.32 | 10 | 182–206 | [29] |
Daeil, Korea | Youngdong dist. | - | - | 145 | [30] |
Macraes, New Zealand | - | - | Cretaceous | [14] | |
Glenorchy, New Zealand | - | - | Cretaceous | [14] | |
Barewood, New Zealand | - | - | Cretaceous | [14] | |
Bendigo, New Zealand | - | - | Cretaceous | [14] | |
Bonanza, New Zealand | - | - | Cretaceous | [14] | |
Quartz Hill, USA | California | 0.1 | 3.7 | 150 | [31] |
Lover Dominion, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Aime, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Gold Run, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Portland Creek, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Lloid, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Hunker Dome, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Mitchell, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Sheba, Canada | Klondike, Yukon Territory | 2.2 | 69 | 160 | [32] |
Lone Star, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Hilchey, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
27 Pup, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Violet, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Virgin, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Amethyst, Canada | Klondike, Yukon Territory | - | - | 160 | [32] |
Samdong, Korea | Youngdong mining district, Korea | 4.2 | 132.4 | Jurassic | [33] |
Barneys Canyon, USA | Utah | 0.45 | 14 | 147–159 | [34] |
Mouse Pass, USA | Alaska | - | - | 95–110 | [35] |
Nuka Bay, USA | Alaska | - | - | 95–110 | [35] |
Chichago mine, USA | Alaska | - | - | 95–110 | [35] |
Berners Bay, USA | Alaska | - | - | 95–110 | [35] |
Alaska-Juneau mine, USA | Alaska | - | - | 95–110 | [35] |
Treadwell mine, USA | Alaska | - | - | 95–110 | [35] |
Sumdum Chief mine, USA | Alaska | - | - | 95–110 | [35] |
Willow Creek, USA | Alaska | - | - | 95–110 | [35] |
Valdez Creek, USA | Alaska | - | - | 95–110 | [35] |
Fairbanks, USA | Alaska | - | - | 95–110 | [35] |
Ryan Lode, USA | Alaska | - | - | 95–110 | [35] |
Fort Knox, USA | Alaska | 1.4 | 45 | 95–110 | [35] |
Table Mountain, USA | Alaska | - | - | 95–110 | [35] |
Rock Creek, USA | Alaska | - | - | 95–110 | [35] |
Chandalar, USA | Alaska | - | - | 95–110 | [35] |
Dongping, China | Hebei province | >3.2 | >100 | 153 | [36] |
Niuxinshan, China | E. Hebei, NE China | 0.6 | 20 | 166 | [37] |
Hanshan, China | NW China | 1.9 | 60 | 214–224 | [38] |
Kyuchus, Russia | Sakha-Yakutia | 5 | 157 | Late Cretaceous | [39] |
Svetloye, Russia | Sakha-Yakutia | - | - | Mesozoic | [39] |
Tas-Uryakhskoye, Russia | Khabarovsk | 1.3 | 40 | Cretaceous | [39] |
Baidi, China | China | - | - | 75–140 | [40] |
Banqi, China | Youjiang basin China | 0.3 | 10 | 182–206 | [40] |
Dongbeizhai, China | China | 2.25 | 70 | Middle Jurassic | [40] |
Gaolong, China | China | 0.8 | 25 | 182–206 | [40] |
Gedang, China | China | 0.2 | 7 | 182–206 | [40] |
Jinya, China | South China platform | 1 | 30 | Cretaceous | [40] |
Lannigou, China | South China platform | 2.6 | 80 | 182–206 | [40] |
Mingshan, China | 0.3 | 10 | 182–206 | [40] | |
Shijia, China | 0.3 | 10 | 75–140 | [40] | |
Humboldt, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Dun Glen, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Santa Rose, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Ten Mile, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Eugene, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Slumbering, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Antelope, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Trinity, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Pine Forest, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Pueblo, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Jackson, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Quinn River, USA | Northwestern Nevada | - | - | Cretaceous | [41] |
Wangu China | Hunan province | 0.4 | 13 | 70 | [42] |
Kuzhubao and Bashishan China | Yunnan Province, Fu Ning district | - | - | Mesozoic? | [43] |
Sanshandao, China | North China platform, Jiaodong province | 3.4 | 107 | Early Cretaceous | [44] |
Dongping, China | Hebei province, | 3.2 | 100 | 153 | [45] |
Donlin Creek, USA | Northern Alaska | 24.7 | 770 | 70 | [46] |
Mayskoye, Russia | Chukchi peninsula | 3.6 | 114 | 107–115 | [47] |
Anjiayingzi, China | North China Craton | 1.1 | 35 | Mesozoic | [48] |
Paishanlou, China | North China Craton | 1.3 | 40 | 124–126 | [49] |
Denggezhuang, China | Muru Gold Belt in Eastern Shandong | 1.4 | 44 | Mesozoic | [50] |
Gubong, Korea | Cheongyang gold district, Cheonan metallogenic province | 4.8 | 150 | Early Cretaceous | [51] |
Rushan, China | Jiaodong Peninsula | >1 | >30 | 117 | [52] |
Baijintazi, China | Daduhe field, Tibetian Plateau | 0.04 | 1,2 | Mesozoic | [53] |
Heijintaizi, China | Daduhe field, Tibetian plateau | 0.05 | 1,5 | Mesozoic | [53] |
Nezhdaninskoye, Russia | Sakha-Yakutia | 3.6 | 114 | 115–124 | [54] |
Linglong, China | Shandong Province | 4 | 124 | Early Cretaceous | [55] |
Sarylakh, Russia | Sakha-Yakutia | 1.3 | 40 | 124 | [56] |
Sentachan, Russia | Sakha-Yakutia | 0.6 | 20 | Early Cretaceous | [56] |
Dyby, Russia | NE Russia | 0.96 | 30 | 125 | [57] |
Ergelyakh 1, Russia | NE Russia | 0.1 | 3 | 140–149 | [57] |
Ergelyakh 2, Russia | NE Russia | 0.1 | 3 | 140–149 | [57] |
Ergelyakh 3, Russia | NE Russia | 0.1 | 3 | 140–149 | [57] |
Arkachan, Russia | W. Verkhoyanye | 3.2 | 100 | Mesozoic | [57] |
Kimpichenskoye Russia | W. Verkhoyanye | - | - | Mesozoic | [58] |
Arkachan, Russia | W. Verkhoyanye | 3.2 | 100 | Mesozoic | [58] |
Natalkinskoye, Russia | NE Russia | 3.2 | 100 | 135 | [59] |
Rodionovskoye, Russia | NE Russia | 0.06 | 2 | Early Cretaceous | [60] |
Shuiyindong, China | Guizhou, Youjiang basin | 1.8 | 55 | 182–206 | [61] |
Yata, China | Guizhou, Youjiang basin, S. China | 0.32 | 10 | 182–206 | [61] |
Samgwang, Korea | Korea | 2.3 | 72 | 127 | [62] |
Sentachan, Russia | Sakha-Yakutia | 0.6 | 20 | Early Cretaceous | [63] |
Sarylakh, Russia | Sakha-Yakutia | 1.3 | 40 | Early Cretaceous | [63] |
Guodawa, Songweizi, Tonggoucheng and Xiaomiaoshan, China | Zhangbaling Tectonic belt | - | - | 116–118 | [64] |
Shkolnoye, Russia | NE Russia | 0.06 | 2 | 135 | [65] |
Badran, Russia | Sakha-Yakutia | 0.45 | 14 | Mesozoic? | [66] |
Pogromnoye, Russia | Transbaykalia | 1.6 | 50 | Late Jurassic | [67] |
Wenyu, China | North China Platform | >3.2 | >100 | 127 | [68] |
Banqi, China | Youjiang basin | 0.32 | 10 | 182–206 | [69] |
Bojitian, China | Youjiang basin S. China | 0.5 | 15 | 182–206 | [69] |
Lannigou, China | South China platform | 2.5 | 80 | 182–206 | [69] |
Shuiyindong, China | Guizhou, Youjiang basin | 1.8 | 55 | 182–206 | [69] |
Taipingdong, China | Youjiang basin | 1.8 | 57 | 182–206 | [69] |
Yata, China | Guizhou, Youjiang basin, S. China | 0.5 | 15 | 182–206 | [69] |
Zimudang, China | Youjiang basin, S. China | 1.9 | 60 | 182–206 | [69] |
Yangzhaiyu, China | North China Craton | 1.1 | 34 | 124–141 | [70] |
Qianhe, China | Xiong’ershan area, North China Craton | - | - | 124–135 | [71] |
Sanshandao, China | Jiaodong Peninsula, Shandong province | 3.4 | 107 | Early Cretaceous | [72] |
Jinshan, China | between the Yangtze and Cathaysia blocks, South China | 3.4 | 107 | Mesozoic? | [73] |
Gatsuurt, Mongolia | North Khentei Gold Belt, Central N Mongolia | <1.6 | <50? | 178 | [74] |
Taipingdong, China | Huijiabao gold district, Yangtze craton | 1.8 | 57 | 182–206 | [75] |
Zimudang, China | Huijiabao gold district, Yangtze craton | 1.9 | 60 | 182–206 | [75] |
Shuiyindong, China | Huijiabao gold district, Yangtze craton | 1.8 | 55 | 182–206 | [75] |
Bojitian, China | Huijiabao gold district, Yangtze craton | 0.5 | 15 | 182–206 | [75] |
Wenyu, China | North China Platform | >3.2 | >100 | 127 | [76] |
Sanshandao, China | Jiaodong gold province | 3.4 | 107 | 117.6 ± 3 | [77] |
Arkachan, Russia | W. Verkhoyanye | 3.2 | 100 | Mesozoic | [78] |
Canan area, Honduras | Lepaguare District, Central America | - | - | Late Cretaceous–Early Tertiary | [79] |
Zhaishang, China | Min–Li metallogenic belt, W Qinling Mountains | >9.6 | >300 | 220 | [80] |
Qiangma, China | North China Craton | >0.6 | >20 | 130 | [81] |
Dongfeng, China | 5.1 | 158 | 125 | [82] | |
Linglong, China | 4 | 124 | 125 | [82] | |
Erdaogou, Xiaobeigou, China | Jiapigou gold province, NE China | >3.2 | >100 | 219–228 | [83] |
Sanshandao, China | Jiaodong gold province | 3.4 | 107 | 117.6 ± 3 | [84] |
Anjiayingzi, China | North China Craton | 1.1 | 35 | Mesozoic | [85] |
Nancha, China | S. Jilin Province, northeast China | 0.6 | 20 | Mesozoic | [86] |
Taishang, China | Jiaodong Peninsula, eastern China | 32 | 1000 | 150–165 | [87] |
Jinchangyu, China | North China Craton | 1.6 | 50 | 219–233 | [88] |
Hetai, China | Hetai goldfield, Bay–Hangzhou Bay metallogenic belt | <0.32 | <10 | Mesozoic | [89] |
Liyuan, China | Central North China Craton | <1 | <30 | 125 | [90] |
Baolun, China | Hainan Province of South China | 0.6 | 20 | 224–228 | [91] |
Gezhen, China | Hainan Province of South China | - | - | 224–228 | [91] |
Dongping, China | Hebei province | >3.2 | >100 | 153 | [92] |
Xiadian, China | Jiaodong Peninsula | 0.5 | 14.6 | 120–126 | [93] |
Luoshan, China | Jiaodong peninsula | 4.8 | 149 | 125 | [94] |
Fushan, China | Jiaodong peninsula | 0.5 | 15 | 125 | [94] |
Bake, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Chanziping, China | Jiangnan Orogenic Belt, Yangtze Block | 0.68 | 21 | 130–144 | [95] |
Dagaowu, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Fenshuiao, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Gaokeng, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Hamashi, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Huangjindong, China | Jiangnan Orogenic Belt, Yangtze Block | 2.6 | 80 | 130–144 | [95] |
Huangshan, China | Jiangnan Orogenic Belt, Yangtze Block | 0.96 | 30 | 130–144 | [95] |
Huangtudian, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Jinshan, China | Jiangnan Orogenic Belt, Yangtze Block | 9.6 | 300 | 130–144 | [95] |
Kengtou, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Miaoxiafan, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Mobin, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Pingshui, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Taojinchong, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Tonggu, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Tongshulin, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Wangu, China | Jiangnan Orogenic Belt, Yangtze Block | 2.7 | 85 | 130–144 | [95] |
Xi’an, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Xichong, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Xintang, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Yanghanwu, China | Jiangnan Orogenic Belt, Yangtze Block | - | - | 130–144 | [95] |
Paleozoic | |||||
Hill End goldfield, Australia | New S. Wales | 1.8 | 56 | Early Carboniferous? | [96] |
Haut Allier, France | Massif Central | <0.16 | <5 | 260 | [97] |
Kvartsytovye gorki, Kazakhstan | N. Kazakhstan | 0.3 | 10 | Late Ordovician? | [98] |
Zholymbet, Kazakhstan | NW. Kazakhstan | 7.7 | 240 | Late Ordovician? | [98] |
Bestobe, Kazakhstan | NW. Kazakhstan | 9.6 | 300 | Late Ordovician? | [98] |
N. Aksu, Kazakhstan | NW. Kazakhstan | 0.16 | 5 | Late Ordovician? | [98] |
S. Aksu, Kazakhstan | NW. Kazakhstan | 14.5 | 450 | Late Ordovician? | [98] |
Stepnyak, Kazakhstan | NW. Kazakhstan | 0.3 | 10 | Late Ordovician? | [98] |
Zhana-Tyube, Kazakhstan | NW. Kazakhstan | 0.3 | 10 | Late Ordovician? | [98] |
Flying Pig, Australia | Hodgkinson field | 0.02 | 0.5 | Carboniferous | [99] |
Tyrconnel, Australia | Hodgkinson field | 0.06 | 2 | Carboniferous | [99] |
Pataz district, Peru | 0.02? | 0.5? | 305–321 | [100] | |
Saralinskoye, Russia | Kuznetsk Alatau | 0.7 | 22 | Early to Late Silurian | [101] |
Nagambie, Australia | Victoria | 0.2 | 7 | Silurian–Early Devonian | [102] |
Kommunar, Russia | Kuznetsk Alatau | 1.6 | 49 | Silurian | [103] |
Zarmitan, Uzbekistan | South Tien Shan | 16 | 500 | Syn- to post-Late Carboniferous | [104] |
Central and North Deborah, Australia | 0.2 | 7 | Late Ordovician–middle Silurian | [105] | |
Sukhoy log, Russia | Bodaybo | 48 | 1500 | Paleozoic | [106] |
Berezovskoye, Russia | Ural | 15 | 466 | Early Silurian | [107] |
Fosterville, Australia | Victoria | 0.16 | 5 | Devonian | [108] |
Vorontsovskoye, Russia | Ural | 2.2 | 68 | Late Devonian to Late Carboniferous | [39] |
Biards district, France | Massif Central | 0.13 | 4 | 300–305 | [109] |
Mayskoye, Russia | N. Karelia | <0.03 | <1 | 397 ± 15 | [110] |
CSA Cobar, Australia | Cobar | 2.6 | 83 | Devonian | [111] |
Moulin de Cheni, France | Saint-Yrieix district Massif Central | 0.8 | 24 | 338 | [112] |
Jiapigou, China | S. Jilin Province, | 1.9 | 60 | Paleozoic? | [113] |
Bulong, China | Akqi County, Southwest Tianshan | 0.03 | 1 | 258 | [114] |
Charters Tauers goldfield, Australia | Tasman Fold Belt, Quinsleend | 6.6 | 207 | Early Devonian? | [115] |
Sarekoubu, China | southern Altai, Xinjiang | <0.16 | <5 | 320.6 ± 4 | [116] |
Qingshui, China | N. Xinjiang | <0.16 | <5 | 315 ± 18 | [117] |
Tanjianshan, China | W. China | 2.3 | 73.9 | 269–288 | [118] |
Sandwich Point, Canada | Sandwich Point Meguma Terrane, Nova Scotia | 0.05 | 1.6 | 380 | [119] |
Fosterville, Australia | Victoria | 0.16 | 5 | Devonian | [120] |
Maldon, Australia | Victoria | 1.8 | 56 | 445 | [120] |
Stawell-Magdala, Australia | Victoria | 3.3 | 105 | Ordovician | [120] |
Bendigo, Australia | Victoria | 17.1 | 533 | Ordovician–Silurian | [120] |
Wattle Gully, Australia | Victoria | 0.4 | 12.9 | Ordovician | [120] |
Mount Piper, Australia | Victoria | <0.16 | <5 | Devonian | [120] |
Woods Point, Australia | Victoria | 0.9 | 28 | Devonian | [120] |
Walhalla (Cohen’s Reef), Australia | Victoria | 1.5 | 46 | Devonian | [120] |
Bogunayskoye, Russia | Enisey ridge | 1.9 | 59 | Paleozoic? | [121] |
Annage, China | Qinghai Province, Kunlun orogenic belt | <0.16 | <5 | Paleozoic? | [122] |
Woxi, China | Hunan Province | 1.35 | 42 | Paleozoic | [123] |
Huangshan, China | Jiangshan-Shaoxing fault zone, South China | 0.3 | 10 | 397 ± 34 | [124] |
Yingchengzi, China | Southern Heilongjiang Province, NE China | <0.16 | <5 | 434–472 | [125] |
Limarinho, Portugal | northern Portugal, Variscan Iberian Massif | <0.16 | <5 | 310–315 | [126] |
Vasil’kovskoe, Kazakhstan | 12.2 | 380 | 312–279 | [127] | |
Woxi, China | Hunan Province, Jiangnan Orogenic Belt, Yangtze Block | >1.3 | >40 | Paleozoic | [95] |
Sukoy Log, Russia | Baikal–Patom | 48 | 1500 | Paleozoic | [128] |
Verninskoye, Russia | Baikal–Patom | 5.8 | 180 | Paleozoic | [128] |
Dogaldyn, Russia | Baikal–Patom | 0.6 | 18 | Paleozoic | [128] |
Uryakh, Russia | Baikal–Muya | 1.8 | 56 | Paleozoic | [128] |
Irokinda, Russia | Baikal–Muya | 1.9 | 60 | Paleozoic | [128] |
Meso- and Neoproterozoic | |||||
Olimpiadinskoye, Russia | Yenisey fold belt | 11.7 | 365 | 594 | [129] |
Cachoeira de Minas, Sao Francisco, Brazil | Borborema Province | <0.3 | <10 | 750 | [130] |
Veduga, Russia | Yenisey fold belt | 4.8 | 149 | 600 | [131] |
Olimpiadinskoye, Russia | Yenisey fold belt | 11.7 | 365 | 594 | [131] |
Harnas area, Sweden | Grenville province | 0.03 | 1 | 1200 | [132] |
Paiol mine, Brazil | Almas Greenstone Belt, Tocantins State | 0.6 | 18 | 535–702 | [133] |
Udereyskoye, Russia | Enisey Ridge | 0.5 | 14.7 | Proterozoic | [56] |
Tunkillia, Nuckulla Hill, Barns, and Weednanna, Australia | Central Gawler Craton | 0.7 | 22 | 1567–1596 | [134] |
Tarcoola gold field, S. Australia | Central Gawler Craton | 0.7 | 22.7 | 1580 | [135] |
Telfer, Australia | Pilbara | 19.0 | 591 | 590–640 | [136] |
Paleoproterozoic | |||||
Tartan Lake, Canada | N. Manitoba | 0.1 | 3 | 1791 | [137] |
Star Lake, Canada | La Ronge region, Northern Saskatchewan | 0.12 | 3.9 | 1848 | [138] |
Flin Flon Domain, Canada | Trans-Hudson orogeny, Saskatchewan | 0.6 | 19 | 1791 | [139] |
Pirila, Finland | Scandinavian | 0.04 | 1.2 | 1810–1830 | [140] |
Star Lake (La Ronge), Canada | La Ronge region, Northern Saskatchewan | 0.37 | 11.5 | 1848 | [141] |
Caxias, Brazil | Sao Luis craton | 0.03 | 1 | 1990–2009 | [142] |
Fazenda Canto, Brazil | Sao Francisco craton, state of Bahia | 0.3 | 10 | 1800–2200 | [143] |
Fazenda Maria Preta, Brazil | Sao Francisco craton, state of Bahia | 0.5 | 15 | 1800–2200 | [143] |
Fazenda Brasileiro, Brazil | Sao Francisco craton, state of Bahia | 2.2 | 70 | 1800–2200 | [143] |
Guarim, Brazil | Tapajos province | <0.3 | <10 | 1880 | [144] |
Batman, Australia | Burrell Creek Formation | 0.3 | 10 | 1800–1835 | [145] |
Serrinha, Brazil | Granite-Related | 0.5 | 15.1 | 2160 | [146] |
Callie, Australia | Dead Bullock Soak goldfield | 5.8 | 180 | 1815–1825 | [147] |
Coyote Prospect, Australia | Killi Killi Formation | 0.45 | 14 | 1790–1840 | [147] |
Groudrust, Australia | Granites goldfield | 0.7 | 22.7 | 1790–1840 | [147] |
Tanami gold field, Australia | Mount Charles Formation | 1.6 | 50.9 | 1790–1840 | [147] |
Angovia, W. Africa | the Yaoure’ area of central Ivory Coast in the West African craton | 0.3 | 10 | 2050–2250 | [148] |
Chega Tudo, Brazil | the Gurupi belt of northern Brazil | 1.9 | 60 | 2000 | [149] |
Bjorkdal, Sweden | Skellefte District, Northern Sweden | 0.6 | 20 | 1780–1790 | [150] |
Carara, Brazil | Guiana Shield | 0.3 | 10 | 2030 | [151] |
Morila, Mali | The Birimian schist belts of West Africa | 7.0 | 217 | 2095–2103 | [152] |
Loulo 3, Mali | Loulo mining district, Mali, West Africa | 1.0 | 32 | Proterozoic | [153] |
Gara, Mali | Loulo mining district, Mali, West Africa | 3.1 | 97 | Proterozoic | [153] |
Yalea, Mali | Loulo mining district, Mali, West Africa | 6.3 | 195 | Proterozoic | [153] |
Gounkoto, Mali | Loulo mining district, Mali, West Africa | - | - | Proterozoic | [153] |
Piaba, Brasil | São Luís cratonic fragment | 3.9 | 120 | 2170–2240 | [154] |
Turmalina, Brazil | Pitangui Shear Zone, Quadrilátero Ferrífero | 1.2 | 37 | 1750 | [155] |
Piaba, Brasil | São Luís cratonic fragment | 3.5 | 109 | 2227–2240 | [156] |
Julie, Ghana | The Leo Man Craton in West Africa | 1.0 | 31 | 1980–2130 | [157] |
Lamego, Brazil | Rio das Velhas greenstone belt, Quadrilátero Ferrífero | 0.4 | 13 | 2041 | [158] |
Meso-Neoarchean | |||||
Henderson, Canada | Superior | 1.3 | 42 | Late Arhaean | [159] |
McInture-Hollinger, Canada | Superior, Timmins | 31.7 | 987 | 2673–2690 | [160] |
Kolar, India | Dharwar craton | 26.9 | 838 | Late Arhaean | [161] |
Renabie, Canada | Wawa belt, Superior | 1.3 | 40 | 2722–2728 | [162] |
Mink Lake, Canada | Superior | <0.03 | <1 | 2730 | [163] |
Sigma, Canada | Superior | 11.5 | 358 | 2705 | [164] |
Kolar, India | Dharwar craton | 26.9 | 838 | Late Arhaean | [165] |
Pamour, Canada | Superior | 7.9 | 247 | 2703–2725 | [166] |
Abbots, South Africa | Barberton | 0.004 | 0.12 | 3084–3126 | [167] |
Bellevue, South Africa | Barberton | 0.01 | 0.3 | 3084–3126 | [167] |
Pioneer, South Africa | Barberton | 0.15 | 4.55 | 3084–3126 | [167] |
Surluga, Canada | Superior | 12.4 | 385 | 2744 | [168] |
Sigma, Canada | Superior | 11.5 | 358 | 2705 | [169] |
Donalda, Canada | Superior | <1.0 | <30 | Arhaean | [169] |
Dumont, Canada | Superior | <0.3 | <10 | Arhaean | [169] |
Champion lode, Nundydroog, Kolar, India | Dharwar craton | 25.5 | 794 | Late Archaean | [170] |
Wiluna, Australia | Yilgarn Block | 8.5 | 265 | Archaean | [171] |
Bronzewing, Australia | Yilgarn Block | 2.7 | 84 | Archaean | [172] |
Siscoe, Canada | Superior Abitibi, Ontario | 0.9 | 27 | Late Archaean | [173] |
Junction, Australia | Yilgarn Block | 6.7 | 209 | Archaean | [174] |
Golden Eagle, Australia | Mosquito Creek belt, Pilbara Craton | 0.4 | 13.1 | 2850–2900 | [175] |
Orenada 2, Cadillac tectonic zone, Canada | Superior | <1.0 | <30 | 2682–2691 | [176] |
Hutti, India | Dharwar craton | 17.1 | 533 | 2510–2750 | [177] |
Golden Crown, Australia | Murchison province, Yilgarn Block | 1.1 | 33.5 | 2600–2800 | [178] |
Wiluna, Australia | Wiluna greenstone belt, Yilgarn Block | 8.5 | 265 | 2749 | [179] |
Ramepuro, Finland | Ilomantsi greenstone belt, Scandinavian province | 0.04 | 1.25 | 2700–2750 | [180] |
Woodcutters field, Australia | Kalgoorlie district, Yilgarn Block | 38.6 | 1200 | Archaean | [181] |
McPhees, Australia | Pilbara Craton | <0.3 | <10 | 2890–2950 | [182] |
Tarmoola, Australia | Yilgarn Block | 3.7 | 116 | 2620–2780 | [183] |
Mount Charlotte, Australia | Yilgarn Block, Kalgoorlie | 4.0 | 125 | Archaean | [184] |
Giant, Canada | Slave, Yellowknife greenstone belt | 7.9 | 246 | 2660–2820 | [185] |
Uti, India | Dharwar craton | 12.9 | 400 | 2576 | [186] |
Primrose, Zimbabwe | Kwekwe district, Midlands greenstone belt, Zimbabwe craton | 0.14 | 4.3 | 2600–2650 | [187] |
Jojo, Zimbabwe | Kwekwe district Midlands greenstone belt, Zimbabwe craton | 0.02 | 0.5 | 2600–2650 | [187] |
Indarama, Zimbabwe | Kwekwe district Midlands greenstone belt, Zimbabwe craton | 0.16 | 5.1 | 2600–2650 | [187] |
Hutti, India | Hutti-Maski greenstone belt, Dharwar craton | >3.2 | >100 | 2532 | [188] |
Hira-Buddini, India | Hutti-Maski greenstone belt, Dharwar craton | 6.4 | 200 | 2532 | [188] |
Sunrise Dam, Australia | Yilgarn Block | 1.2 | 36.7 | 2670 | [189] |
Missouri, Australia | Yilgarn Block | 0.03 | 0.9 | Archaean | [190] |
Klipwal Gold Mine, South Africa | Klipwal Shear Zone, SE Kaapvaal Craton, | 0.5 | 15 | 2863–2721 | [191] |
3. Characteristics of the Mineralizing Fluids
3.1. Cenozoic Deposits
3.2. Mesozoic Deposits
3.3. Paleozoic Deposits
3.4. Meso- and Neoproterozoic Deposits
3.5. Paleoproterozoic Deposits
3.6. Meso-Neoarchean Deposits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Naumov, V.B.; Dorofeeva, V.A.; Mironova, O.F. Principal physicochemical parameters of natural mineral-forming fluids. Geochem. Intern. 2009, 47, 777–802. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Leach, D.L.; Miller, M.L.; Pickthorn, W.J. Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska. Turbid. Hosted Gold Depos. Geol. Assoc. Can. Spec. Pap. 1986, 32, 87–105. [Google Scholar]
- Walton, L.A. Geology and Geochemistry of the Venus Au–Ag–Pb–Zn Deposit, Yukon Territory. Master’s Thesis, The University of Alberta, Edmonton, AB, Canada, 7 May 1987. [Google Scholar]
- Lattanzi, P.F.; Curti, E.; Bastogi, M. Fluid inclusions studies on the gold deposits on the upper anzasca Valley, northwestern alps, Italy. Econ. Geol. 1989, 84, 1382–1397. [Google Scholar] [CrossRef]
- Zhang, X.; Nesbitt, B.E.; Muehlenbachs, K. Gold mineralization in the Okanagan Valley, southern British Columbia: Fluid inclusion and stable isotope studies. Econ. Geol. 1989, 84, 410–424. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Leach, D.L.; Rose, S.C.; Landis, G.P. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska—Implications for ore genesis. Econ. Geol. Monogr. 1989, 6, 363–375. [Google Scholar]
- Leitch, C.H.B. Geology, Wallrock Alteration, and Characteristic of the Ore Fluid at the Bralorne Mesothermal Gold Vein Deposit, Southwester British Columbia. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 25 April 1989. [Google Scholar]
- Diamond, L.W. Fluid inclusions evidence for P–V–T–X evolution hydrothermal solutions in late-alpine gold-quartz veins at Brusson, Val d’Ayas, Northwest Italian Alps. Am. J. Sci. 1990, 290, 912–958. [Google Scholar] [CrossRef]
- Leitch, C.H.B.; Godwin, C.I.; Brown, T.H.; Taylor, B.E. Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada. Econ. Geol. 1991, 86, 318–353. [Google Scholar] [CrossRef]
- Craw, D. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand. Chem. Geol. 1992, 98, 221–236. [Google Scholar] [CrossRef]
- Craw, D.; Teagle, D.A.H.; Belocky, R. Fluid immiscibility in Late-Alpine gold-bearing veins, Eastern and Northwestern European Alps. Miner. Depos. 1993, 28, 28–36. [Google Scholar] [CrossRef]
- Miller, L.D.; Goldfarb, R.J.; Snee, L.W.; Cent, C.A.; Kirkham, R.A. Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay district, southeast Alaska. Econ. Geol. 1995, 90, 343–368. [Google Scholar] [CrossRef]
- Li, G.M.; Qin, K.Z.; Ding, K.S.; Liu, T.B.; Li, J.X.; Wang, S.H.; Jiang, S.Y.; Zhang, X.C. Geology, Ar–Ar age and mineral assemblage of Eocene Skarn Cu–Au ± Mo deposits in the southeastern gangdese arc, southern tibet: Implications for deep exploration. Resour. Geol. 2006, 56, 315–336. [Google Scholar] [CrossRef]
- Moritz, R.; Ghasban, F.; Singer, B.S. Eocene gold ore formation at muteh, sanandaj-sirjan tectonic zone, western iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the zagros orogen. Econ. Geol. 2006, 101, 1497–1524. [Google Scholar] [CrossRef]
- Kekelia, S.A.; Kekelia, M.A.; Kuloshvili, S.I.; Sadradze, N.G.; Gagnidze, N.E.; Yaroshevich, V.Z.; Asatiani, G.G.; Doebrich, J.L.; Goldfarb, R.J.; Marsh, E.E. Gold deposits and occurrences of the greater caucasus, georgia republic: Their genesis and prospecting criteria. Ore Geol. Rev. 2008, 34, 369–386. [Google Scholar] [CrossRef]
- Ruiz, F.J.Q. La Herradura ore deposit: An orogenic gold deposit in Northwestern Mexico. Master’s Thesis, University of Arisona, Tucson, AZ, USA, 4 May 2008. [Google Scholar]
- Sun, X.M.; Zhang, Y.; Xiong, D.X.; Sun, W.D.; Shi, G.Y.; Zhai, W.; Wang, S.W. Crust and mantle contributions to gold-forming process at the daping deposit, ailaoshan gold belt, Yunnan, China. Ore Geol. Rev. 2009, 36, 235–249. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J.; Hu, P.; Lai, X.R.; Liu, Y.F. Mayum: An orogenic gold deposit in Tibet, China. Ore Geol. Rev. 2009, 36, 160–173. [Google Scholar] [CrossRef]
- Zhai, W.; Suna, X.; Yi, J.; Zhang, X.; Mo, R.; Zhou, F.; Wei, H.; Zeng, Q. Geology, geochemistry, and genesis of orogenic gold—Antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol. Rev. 2014, 58, 68–90. [Google Scholar] [CrossRef]
- Taghipour, B.; Ahmadnejad, F. Geological and geochemical implications of the genesis of the qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). Geologos 2015, 21, 31–57. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wei, H.; Zhai, W.; Shi, G.; Liang, Y.; Mo, R.; Han, M.; Yi, J.; Zhang, X. Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geol. Rev. 2016, 74, 196–210. [Google Scholar] [CrossRef]
- Coveney, R.M., Jr. Gold quartz veins and auriferous granite at the oriental mine, alleghany district, California. Econ. Geol. 1981, 76, 2176–2199. [Google Scholar] [CrossRef]
- Read, J.J.; Meinert, L.D. Gold-bearing quartz vein mineralization at the big hurrah mine, Seward Peninsula, Alaska. Econ. Geol. 1986, 81, 1760–1774. [Google Scholar] [CrossRef]
- Weir, R.H., Jr.; Kerrick, D.M. Mineralogic, fluid inclusion, and stable isotope studies of several gold mines in the mother lode, Tuolumne and Mariposa Counties, California. Econ. Geol. 1987, 82, 328–344. [Google Scholar] [CrossRef]
- Cunningham, C.G.; Ashley, R.P.; Chou, I.-M.; Zushu, H.; Chaoyuan, W.; Wenkang, L. Newly discovered sedimentary rock-hosted disseminated gold deposits in the People’s Republic of China. Econ. Geol. 1988, 83, 1462–1467. [Google Scholar] [CrossRef]
- So, C.-S.; Yun, S.-T.; Choi, S.-H.; Shelton, K.L. Geochemical studies of hydrothermal gold–silver deposits, Republic of Korea: Youngdong mining district. Min. Geol. 1989, 39, 9–19. [Google Scholar]
- Elder, D.; Cashman, S.M. Tectonic control and fluid evolution in the Quartz Hill, California, lode gold deposit. Econ. Geol. 1992, 87, 1795–1812. [Google Scholar] [CrossRef]
- Rushton, R.W.; Nesbitt, B.E.; Muehlenbachs, K.; Mortensen, J.K. A fluid inclusion and stable isotope study of Au quartz veins in the klondike district, Yukon Territory, Canada: A section through a mesothermal vein system. Econ. Geol. 1993, 88, 647–678. [Google Scholar] [CrossRef]
- So, C.-S.; Yun, S.-T.; Sheiton, K.L. Mesothermal gold vein mineralization of the Samdong mine, Youngdong mining district, Republic of Korea. A geochemical and fluid inclusion study. Miner. Depos. 1995, 30, 384–396. [Google Scholar] [CrossRef]
- Presnell, R.D.; Parry, W.T. Geology and geochemistry of the Barneys canyon gold deposit, Utah. Econ. Geol. 1996, 91, 273–288. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Miller, L.D.; Leach, D.L.; Snee, L.W. Gold deposits in metamorphyc rocks of Alaska. Econ. Geol. Monogr. 1997, 9, 151–190. [Google Scholar]
- Nie, F.J. Geology and origin of the dongping alkalic-type gold deposit, northern Hebei province, People’s Republic of China. Resour. Geol. 1998, 48, 139–158. [Google Scholar] [CrossRef]
- Yao, Y.; Morteani, G.; Trumbull, R.B. Fluid inclusion microthermometry and the P–T evolution of gold-bearing hydrothermal fluids in the Niuxinshan gold deposit, eastern Hebei province, NE China. Miner. Depos. 1999, 34, 348–365. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhang, Z.H.; Yang, J.M.; Zhang, Z.C. The Hanshan gold deposit in the Caledonian North Qilian orogenic belt, NW China. Miner. Depos. 2000, 35, 63–71. [Google Scholar]
- Naumov, E.A.; Borovikov, A.A.; Borisenko, A.S.; Zadorozhnyy, M.V.; Murzin, V.V. Physicochemical conditions of formations of epithermal gold–mercury deposits. Russ. Geol. Geophys. 2002, 43, 1055–1064. [Google Scholar]
- Zhong, H.R.; Chao, S.W.; Wu, B.X.; Zhi, T.G.; Hofstra, A.H. Geology and geochemistry of carlin-type gold deposits in China. Miner. Depos. 2002, 37, 378–392. [Google Scholar] [CrossRef]
- Cheong, S. Fluid inclusion study of metamorphic gold–quartz veins in northwestern Nevada, U.S.A.: Characteristics of tectonically induced fluid. Geosci. J. 2002, 6, 103–115. [Google Scholar] [CrossRef]
- Mao, J.; Kerrich, R.; Li, H.; Li, Y. High 3He/4He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the tanlu deep fault zone. Geochem. J. 2003, 36, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Cromie, P.W.; Zaw, K. Geological setting, nature of ore fluids and sulphur isotope geochemistry of the Fu Ning Carlin-type gold deposits, Yunnan Province, China. Geofluids 2003. 3, 133–143. [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K. Fluid inclusion and noble gas studies of the dongping gold deposit, Hebei Province, China: A mantle connection for mineralization? Econ. Geol. 2003, 98, 517–534. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, C.; McClelland, W. The late cretaceous donlin creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation. Econ. Geol. 2004, 99, 643–671. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Bryzgalov, I.A.; Krivitskaya, N.N.; Prokofiev, V.Y.; Vikentieva, O.V. The Maiskoe multimegastage disseminated gold–sulfide deposit (Chukotka, Russia): Mineralogy, fluid inclusions, stable isotopes (O and S), history, and conditions of formation. Geol. Ore Depos. 2004, 46, 409–440. [Google Scholar]
- Li, Y.G.; Zhai, M.G.; Miao, L.C.; Xue, L.W.; Zhu, J.W.; Guan, H. Ore-forming fluids of the anjiayingzi gold deposit in Chifeng region, Inner Mongolia. Acta Petrol. Sin. 2004, 20, 961–968. [Google Scholar]
- Zhang, X.H.; Liu, Q.; Ma, Y.J.; Wang, H. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton. Ore Geol. Rev. 2005, 26, 325–348. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, J.; Liu, H.; Shen, P.; Zhang, L. The Ore-forming Fluid of the Gold Deposits of Muru Gold Belt in Eastern Shandong, China—A case study of denggezhuang gold deposit. Resour. Geol. 2006, 56, 375–384. [Google Scholar] [CrossRef]
- Yoo, B.C.; Lee, H.K.; White, N.C. Gold-bearing mesothermal veins from the gubong mine, cheongyang gold district, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol. 2006, 101, 883–901. [Google Scholar] [CrossRef]
- Hu, F.-F.; Fan, H.-R.; Zhai, M.-G.; Jin, C.-W. Fluid evolution in the rushan lode gold deposit of Jiaodong Peninsula, eastern China. J. Geochem. Explor. 2006, 89, 161–164. [Google Scholar] [CrossRef]
- Li, X.F.; Mao, J.W.; Wang, C.; Watanabe, Y. The Daduhe gold field at the eastern margin of the Tibetan Plateau: He, Ar, S, O, and hisotopic data and their metallogenic implications. Ore Geol. Rev. 2007, 30, 244–256. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Gamyanin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Alpatov, V.A.; Bakharev, A.G. Fluid composition and origin in the hydrothermal system of the nezhdaninsky gold deposit, Sakha (Yakutia), Russia. Geol. Ore Depos. 2007, 49, 87–128. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Yong, L.; Chen, Y.J. Fluid inclusion study of the Linglong gold deposit, Shandong province, China. Acta Petrol. Sin. 2007, 23, 2207–2216. [Google Scholar]
- Obolensky, A.A.; Gushchina, L.V.; Borisenko, A.S.; Borovikov, A.A.; Pavlova, G.G. Antimony in hydrothermal processes: Solubility, conditions of transfer, and metal-bearing capacity of solutions. Russ. Geol. Geophys. 2007, 48, 992–1001. [Google Scholar] [CrossRef]
- Gamyanin, G.N.; Prokofiev, V.Y.; Goryachev, N.A.; Bortnikov, N.S. Fluid inclusions in quartz of sin-granitic precious metals deposit of north-earth of Russia. In Part of Mineralogy in Knowledge of Ore-Forming Processes; Institut Geologii Rudnykh Mestorozhdeniy, Petrografii, Mineralogii I Geokhimii Ran (IGEM RAS): Moscow, Russia, 2007; pp. 92–97. [Google Scholar]
- Aristov, V.V.; Konstantiov, M.M.; Kryazhev, S.G. Genetic features of gold and silver deposits from the Western Verkhoyansk area: Fluid inclusion and isotope data. Geochem. Intern. 2008, 46, 313–317. [Google Scholar] [CrossRef]
- Goryachev, N.A.; Vikent’eva, O.V.; Bortnikov, N.S.; Prokofiev, V.Y.; Alpatov, V.A.; Golub, V.V. The world-class natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore. Geol. Ore Depos. 2008, 50, 362–390. [Google Scholar] [CrossRef]
- Volkov, A.V.; Sidorov, V.A.; Prokofiev, V.Y.; Sidorov, A.A. Polychronous formation of the rodionovskoe gold–quartz deposit, Russian northeast. Dokl. Earth Sci. 2009, 424, 19–23. [Google Scholar] [CrossRef]
- Su, W.; Heinrich, C.A.; Pettke, T.; Zhang, X.; Hu, R.; Xia, B. Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulphydation by deep crustal fluids. Econ. Geol. 2009, 104, 73–93. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.C.; Lee, H.K.; White, N.C. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—A mesothermal, vein-hosted gold–silver deposit. Miner. Depos. 2010, 45, 161–187. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Gamynin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Prokop’ev, A.V. The sarylakh and sentachan gold–antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold–quartz and epithermal stibnite ore. Geol. Ore Depos. 2010, 52, 339–372. [Google Scholar] [CrossRef]
- Huang, D.Z.; Wang, X.Y.; Yang, X.Y.; Li, G.M.; Huang, S.Q.; Liu, Z.; Peng, Z.H.; Qiu, R.L. Geochemistry of gold deposits in the zhangbaling tectonic belt, Anhui province, China. Int. Geol. Rev. 2011, 53, 612–634. [Google Scholar] [CrossRef]
- Volkov, A.V.; Savva, N.E.; Sidorov, A.A.; Prokofiev, V.Y.; Goryachev, N.A.; Voznesensky, S.D.; Al’shevsky, A.V.; Chernova, A.D. Shkol’noe gold deposit, the Russian northeast. Geol. Ore Depos. 2011, 53, 1–26. [Google Scholar] [CrossRef]
- Obolensky, A.A.; Gushchina, L.V.; Anisimova, G.S.; Serkebaeva, E.S.; Tomilenko, A.A.; Gibsher, N.A. Physicochemical modeling of mineral formation processes at the badran gold deposit (Yakutia). Russ. Geol. Geophys. 2011, 52, 290–1001. [Google Scholar] [CrossRef]
- Volkov, A.V.; Prokofiev, V.Y.; Alekseev, V.Y.; Baksheev, I.A.; Sidorov, A.A. Ore-forming fluids and conditions of formation of gold–sulfide–quartz mineralization in the shear zone: Pogromnoe deposit (Eastern Transbaikalian Region). Dokl. Earth Sci. 2011, 441, 1492–1497. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Jiang, S.Y.; Qin, Y.; Zhao, H.X.; Hu, C.J. Fluid inclusion characteristics and ore genesis of the Wenyu gold deposit, Xiaoqinling gold belt. Acta Petrol. Sin. 2011, 27, 3787–3799. [Google Scholar]
- Gu, X.X.; Zhang, Y.M.; Li, B.H.; Dong, S.Y.; Xue, C.J.; Fu, S.H. Hydrocarbon- and ore-bearing basinal fluids: A possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China. Miner. Depos. 2012, 47, 663–682. [Google Scholar] [CrossRef]
- Li, J.-W.; Li, Z.-K.; Zhou, M.F.; Chen, L.; Bi, S.-J.; Deng, X.-D.; Qui, H.-N.; Cohen, B.; Selby, D.; Zhao, X.-F. The Early Cretaceous Yangzhaiyu Lode Gold Deposit, North China Craton: A Link Between Craton Reactivation and Gold Veining. Econ. Geol. 2012, 107, 43–79. [Google Scholar] [CrossRef]
- Tang, K.-F.; Li, J.W.; Selby, D.; Zhou, M.F.; Bi, S.J.; Deng, X.D. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong’ershan area, southern North China Craton. Miner. Depos. 2013, 48, 729–747. [Google Scholar] [CrossRef]
- Hu, F.F.; Fan, H.R.; Jiang, X.H.; Li, X.C.; Yang, K.F.; Mernagh, T. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids 2013, 13, 528–541. [Google Scholar] [CrossRef]
- Zhao, C.; Ni, P.; Wang, G.G.; Ding, J.Y.; Chen, H.; Zhao, K.D.; Cai, Y.T.; Xu, Y.F. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China. Geofluids 2013, 13, 506–527. [Google Scholar] [CrossRef]
- Khishgee, C.; Akasaka, M.; Ohira, H.; Sereenen, J. Gold Mineralization of the Gatsuurt Deposit in the North Khentei Gold Belt, Central Northern Mongolia. Resour. Geol. 2014, 64, 1–16. [Google Scholar] [CrossRef]
- Peng, Y.; Gu, X.; Zhang, Y.; Liu, L.; Wu, C.; Chen, S. Ore-forming process of the Huijiabao gold district, southwestern Guizhou Province, China: Evidence from fluid inclusions and stable isotopes. J. Asian Earth Sci. 2014, 93, 89–101. [Google Scholar] [CrossRef]
- Zhou, Z.-J.; Chen, Y.-J.; Jiang, S.-Y.; Zhao, H.-X.; Qin, Y.; Hu, C.-J. Geology, geochemistry and ore genesis of theWenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China craton. Ore Geol. Rev. 2014, 59, 1–20. [Google Scholar] [CrossRef]
- Wen, B.J.; Fan, H.R.; Hu, F.F.; Yang, K.F.; Liu, X.; Cai, Y.C.; Sun, Z.F.; Sun, Z.F. The genesis of pegmatite-type molybdenum mineralization in Sanshandao, and their implications for molybdenum deposit in Jiaodong, East China. Acta Petrol. Sin. 2015, 31, 1002–1014. [Google Scholar]
- Gamyanin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Bortnikov, N.S. Arkachan: A new gold–bismuth–siderite–sulfide type of deposits in the west verkhoyansky tin district, Yakutia. Geol. Ore Depos. 2015, 57, 465–495. [Google Scholar] [CrossRef]
- Salvioli-Mariani, E.; Toscani, L.; Boschetti, T.; Bersani, D.; Mattioli, M. Gold mineralisations in the Canan area, lepaguare district, east-central honduras: Fluid inclusions and geochemical constraints on gold deposition. J. Geochem. Explor. 2015, 158, 243–256. [Google Scholar] [CrossRef]
- Liu, J.; Dai, H.; Zhai, D.; Wang, J.; Wang, Y.; Yang, L.; Mao, G.; Liu, X.; Liao, Y.; Yu, C.; et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China. Ore Geol. Rev. 2015, 64, 273–298. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Y.-J.; Jiang, S.-Y.; Hu, C.-J.; Qin, Y.; Zhao, H.-X. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit, Xiaoqinling gold field, Qinling Orogen, China. Ore Geol. Rev. 2015, 66, 47–64. [Google Scholar] [CrossRef]
- Wen, B.-J.; Fan, H.-R.; Santosh, M.; Hu, F.-F.; Pirajno, F.; Yang, K.-F. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geol. Rev. 2015, 65, 643–658. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.-G.; Men, L.-J.; Chai, P. Origin and evolution of the ore-forming fluids of the Erdaogou and Xiaobeigou gold deposits, Jiapigou gold province, NE China. J. Asian Earth Sci. 2016, 129, 170–190. [Google Scholar] [CrossRef]
- Wen, B.-J.; Fan, H.-R.; Hu, F.-F.; Liu, X.; Yang, K.-F.; Sun, Z.-F. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
- Fu, L.; Wei, J.; Chen, H.; Bagas, L.; Tan, J.; Li, H.; Zhang, D.; Tian, N. The relationship between gold mineralization, exhumation of metamorphic core complex and magma cooling: Formation of the Anjiayingzi Au deposit, northern North China Craton. Ore Geol. Rev. 2016, 73, 222–240. [Google Scholar] [CrossRef]
- Chai, P.; Sun, J.-G.; Hou, Z.-Q.; Xing, S.-W.; Wang, Z.-Y. Geological, fluid inclusion, H–O–S–Pb isotope, and Ar–Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, northeast China. Ore Geol. Rev. 2016, 72, 1053–1071. [Google Scholar] [CrossRef]
- Yang, L.-Q.; Deng, J.; Guo, L.-N.; Wang, Z.-L.; Li, X.-Z.; Li, J.-L. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 585–602. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, S.-H.; Bagas, L.; Li, C.; Hu, J.-Z.; Zhang, Q.; Zhou, W.; Ding, H.-Y. The geology and geochemistry of Jinchangyu gold deposit, North China Craton: Implications for metallogenesis and geodynamic setting. Ore Geol. Rev. 2016, 73, 313–329. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Y.; Wang, Y.; Shen, W.; Yang, Z.; Li, X.; Xiao, F. A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay–Hangzhou Bay metallogenic belt, South China. Ore Geol. Rev. 2016, 73, 346–353. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, S.-F.; Li, H.-L.; Jiang, S.-Y. Origin and evolution of the ore-forming fluids in the Liyuan gold deposit, central North China Craton: Constraints from fluid inclusions and H–O–C isotopic compositions. Geofluids 2017, 6, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Wang, Z.; Wu, C.; Zhou, Y.; Shan, Q.; Hou, M.; Fu, Y.; Zhang, X. Mesozoic gold mineralization in Hainan Province of South China: Genetic types, geological characteristics and geodynamic settings. J. Asian Earth Sci. 2017, 137, 80–108. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Li, S.; Santosh, M.; Zhang, D.; Yang, L.; Quan, S. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China. Ore Geol. Rev. 2017, 80, 166–184. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Liu, Y.; Tian, J.; Li, X.; Zhang, H. Ore genesis of the Xiadian gold deposit, Jiaodong Peninsula, East China: Information from fluid inclusions and mineralization. Geol. J. 2017, 53, 1–19. [Google Scholar] [CrossRef]
- Guo, L.-N.; Goldfarb, R.J.; Wang, Z.-L.; Li, R.-H.; Chen, B.-H.; Li, J.-L. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 2017, 88, 511–533. [Google Scholar] [CrossRef]
- Xu, D.; Deng, T.; Chi, G.; Wang, Z.; Zou, F.; Zhang, J.; Zou, S. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting. Ore Geol. Rev. 2017, 88, 565–618. [Google Scholar] [CrossRef]
- Seccombe, P.K.; Hicks, M.N. The Hill End goldfield, NSW, Australia—Early metamorphic deposition of auriferous quartz veins. Mineral. Petrol. 1989, 40, 257–273. [Google Scholar] [CrossRef]
- Bril, H.; Beaufort, D. Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralizations, Haut Allier, Massif Central, France. Econ. Geol. 1989, 84, 2237–2251. [Google Scholar] [CrossRef]
- Spiridonov, E.M.; Prokofiev, V.Y. Geochemical characteristics and conditions of formation of the plutonogenetic gold–telluride deposits in the caledonides of Nortern Kazakhstan. Int. Geol. Rev. 1990, 32, 188–202. [Google Scholar] [CrossRef]
- Peters, S.G.; Golding, S.D.; Dowling, K. Melange- and sediment-hosted gold-bearing quartz veins, Hodgkinson gold field, Queensland, Australia. Econ. Geol. 1990, 85, 312–327. [Google Scholar] [CrossRef]
- Schreiber, D.W.; Fontbote, L.; Lochmann, D. Geologic setting, paragenesis, and physicochemistry of gold quartz veins hosted by plutonic rocks in the Pataz region. Econ. Geol. 1990, 85, 1328–1347. [Google Scholar] [CrossRef]
- Prokofiev, V.Y.; Sanina, N.B. Geochemistry of the mineralizing fluids at the Sarala gold deposit, Kuznetsk Alatau. Geochem. Intern. 1992, 29, 42–49. [Google Scholar]
- Gao, Z.L.; Kwak, T.A.P.; Changkakoti, A.; Hussein, E.; Gray, J. Supergene ore and hypogene nonore mineralization at the Nagambie sediment-hosted gold deposit, Victoria, Australia. Econ. Geol. 1995, 90, 1747–1763. [Google Scholar] [CrossRef]
- Grebenschikova, V.I.; Prokofiev, V.Y.; Troshin, Y.P. New data of formation conditions of gold vein of Kommunar gold deposit (Kuznetsk Alatau). Dokl. Earth Sci. 1995, 340, 239–242. [Google Scholar]
- Bortnikov, N.S.; Prokofiev, V.Y.; Razdolina, N.V. Origin of the charmitan gold–quartz deposit (Uzbekistan). Geol. Ore Depos. 1996, 38, 208–226. [Google Scholar]
- Jia, Y.; Li, X.; Kerrich, R. A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the bendigo gold field, central Victoria, Australia. Econ. Geol. 2000, 95, 467–493. [Google Scholar] [CrossRef]
- Laverov, N.P.; Prokofiev, V.Y.; Distler, V.V.; Spiridonov, A.M.; Yudovskaya, M.A.; Grebenschikova, V.I.; Matel, N.L. New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold-platinum deposit. Dokl. Earth Sci. 2000, 371, 357–361. [Google Scholar]
- Baksheev, I.A.; Prokofiev, V.Y.; Ustinov, V.I. Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, central urals: Evidence from fluid inclusions and stable isotopes. Geochem. Intern. 2001, 39, S129. [Google Scholar]
- Mernagh, T.P. A fluid inclusion study of the fosterville mine: A turbidite-hosted gold field in the western Lachlan fold belt, Victoria, Australia. Chem. Geol. 2001, 173, 91–106. [Google Scholar] [CrossRef]
- Bellot, J.-P.; Lerouge, C.; Bailly, L.; Bouchot, V. The biards Sb–Au-bearing shear zone (Massif Central, France): An indicator of crustal-scale transcurrent tectonics guiding late Variscan collapse. Econ. Geol. 2003, 98, 1427–1447. [Google Scholar] [CrossRef]
- Safonov, Y.G.; Volkov, A.V.; Volfson, A.A.; Genkin, A.D.; Krylova, T.L.; Chugayev, A.V. The maisk quartz gold deposit (Northern Karelia): Geological, mineralogical, and geochemical studies and some genetic problems. Geol. Ore Depos. 2003, 45, 375–394. [Google Scholar]
- Giles, A.D.; Marshall, B. Genetic significance of fluid inclusions in the CSA Cu–Pb–Zn deposit, Cobar, Australia. Ore Geol. Rev. 2004, 24, 241–266. [Google Scholar] [CrossRef]
- Vallance, J.; Boiron, M.-L.; Cathelineau, M.; Fourcade, S.; Varlet, M.; Marignac, C. The granite hosted gold deposit of Moulin de Cheni (Saint-Yrieix district, Massif Central, France): Petrographic, structural, fluid inclusion and oxygen isotope constraints. Miner. Depos. 2004, 39, 265–281. [Google Scholar]
- Miao, L.C.; Qiu, Y.M.; Fan, W.M.; Zhang, F.Q.; Zhai, M.G. Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China. Ore Geol. Rev. 2004, 26, 137–165. [Google Scholar] [CrossRef]
- Yang, F.Q.; Mao, J.W.; Wang, Y.T.; Bierlein, F.P. Geology and geochemistry of the Bulong quartz-barite vein-type gold deposit in the Xinjiang Uygur Autonomous Region, China. Ore Geol. Rev. 2005, 26, 52–76. [Google Scholar]
- Kreuzer, O.P. Intrusion-hosted mineralization in the Charters Towers goldfield, North Queensland: New isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Econ. Geol. 2005, 100, 1583–1603. [Google Scholar] [CrossRef]
- Xu, J.; Ding, R.; Xie, Y.; Zhong, C.; Shan, L. The source of hydrothermal fluids for the Sarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidence from fluid inclusions and geochemistry. J. Asian Earth Sci. 2008, 32, 247–258. [Google Scholar] [CrossRef]
- Yang, F.Q.; Mao, J.W.; Bierlein, F.P.; Pirajno, F.; Zhao, C.S.; Ye, H.S.; Liu, F. A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China. Ore Geol. Rev. 2009, 35, 217–234. [Google Scholar] [CrossRef]
- Zhang, D.Q.; She, H.Q.; Feng, C.Y.; Li, D.X.; Li, J.W. Geology, age, and fluid inclusions of the Tanjianshan gold deposit, western China: Two oregenies and two gold mineralizing events. Ore Geol. Rev. 2009, 36, 250–263. [Google Scholar]
- Kontak, D.J.; Kyser, K. A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: Evidence for multiple fluid. Miner. Depos. 2011, 46, 337–363. [Google Scholar] [CrossRef]
- Fu, B.; Kendrick, M.A.; Fairmaid, A.M.; Phillips, D.; Wilson, C.J.L.; Mernagh, T.P. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib. Miner. Pet. 2012, 163, 427–447. [Google Scholar] [CrossRef]
- Ryabukha, M.A.; Gibsher, N.A.; Tomilenko, A.A.; Bulbak, T.A.; Khomenko, M.O.; Sazonov, A.M. P–T–X parameters of metamorphogene and hydrothermal fluids, isotopy and age of the Bogunai gold deposit, southern Yenisei Ridge (Russia). Russ. Geol. Geophys. 2015, 56, 903–918. [Google Scholar] [CrossRef]
- Lai, J.; Ju, P.; Tao, J.; Yang, B.; Wang, X. Characteristics of fluid inclusions and metallogenesis of annage gold deposit in Qinghai Province, China. Open J. Geol. 2015, 5, 780–794. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Wang, G.; Liu, S.; Sun, Y.; Huang, Y.; Hoshino, K. A Study on the mineralization of the Woxi Au–Sb–W deposit, Western Hunan, China. Resour. Geol. 2015, 65, 27–38. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Pei, N.P.; Wang, G.-G.; Pan, J.-Y.; Guan, S.-J.; Chen, H.; Ding, J.-Y.; Li, L. Geology, fluid inclusion and stable isotope study of the Huangshan orogenic gold deposit: Implications for future exploration along the Jiangshan-Shaoxing fault zone, South China. J. Geochem. Explor. 2016, 171, 37–54. [Google Scholar] [CrossRef]
- Chai, P.; Sun, J.-G.; Xing, S.-W.; Li, B.; Lu, C. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China. Ore Geol. Rev. 2016, 72, 1022–1036. [Google Scholar] [CrossRef]
- Fuertes-Fuente, M.; Cepedal, A.; Lima, A.; Dória, A.; dos Ribeiro, M.A.; Guedes, A. The Au-bearing vein system of the Limarinho deposit (northern Portugal): Genetic constraints from Bi-chalcogenides and Bi–Pb–Ag sulfosalts, fluid inclusions and stable isotopes. Ore Geol. Rev. 2016, 72, 213–231. [Google Scholar] [CrossRef]
- Khomenko, M.O.; Gibsher, N.A.; Tomilenko, A.A.; Bul’bak, T.A.; Ryabukha, M.A.; Semenova, D.V. Physicochemical parameters and age of the Vasil’kovskoe gold deposit, Northern Kazakhastan. Russ. Geol. Geophys. 2016, 57, 1728–1749. [Google Scholar] [CrossRef]
- Prokofiev, V.Y.; Safonov, Y.G.; Lüders, V.; Borovikov, A.A.; Kotov, A.A.; Zlobina, T.M.; Murashov, K.Y.; Yudovskaya, M.A.; Selektor, S.L. The sources of mineralizing fluids of orogenic gold deposits of the Baikal-Patom and Muya areas, Siberia: Constraints from the C and N stable isotope compositions of fluid inclusions. Ore Geol. Rev. 2019, 111, 102988. [Google Scholar] [CrossRef]
- Prokofiev, V.Y.; Afanas’yeva, Z.B.; Ivanova, G.F.; Boiron, M.C.; Marignac, C. Fluid inclusions in mineral at the Olympiada Au–(Sb–W) deposit, Yenisey ridge. Geochem. Intern. 1995, 32, 104–121. [Google Scholar]
- Coutinho, M.G.N.; Alderton, D.H.M. Character and genesis of Proterozoic shear zone-hosted gold deposits in Borborema Province, northeast Brazil. Transact. Inst. Min. Metall. Sect. B 1998, 107, B109–B119. [Google Scholar]
- Genkin, A.D.; Wagner, F.E.; Krylova, T.L.; Tsepin, A.I. Gold-bearing arsenopyrite and its formation condition at the Olympiada and Veduga gold deposits (Yenisei Range, Siberia). Geol. Ore Depos. 2002, 44, 52–68. [Google Scholar]
- Alm, E.; Broman, C.; Billstrom, K.; Sundblad, K.; Torssander, P. Fluid characteristics and genesis of early Neoproterozoic orogenic gold-quartz veins in the Harnas area, southwestern Sweden. Econ. Geol. 2003, 98, 1311–1328. [Google Scholar] [CrossRef]
- Ferrari, M.A.D.; Choudhuri, A. Structural controls on gold mineralisation and the nature of related of the Paiol gold deposit, Almas Greenstone Belt, Brazil. Ore Geol. Rev. 2004, 24, 173–197. [Google Scholar] [CrossRef]
- Fraser, G.L.; Skirrow, R.G.; Schmidt-Mumm, A.; Holm, O. Mesoproterozoic gold in the central Gawler craton, South Australia: Geology, alteration, fluids, and timing. Econ. Geol. 2007, 102, 1511–1539. [Google Scholar] [CrossRef]
- Budd, A.R.; Skirrow, R.G. The nature and origin of gold deposits of the Tarcoola Goldfield and implications for the central Gawler gold province, South Australia. Econ. Geol. 2007, 102, 1541–1563. [Google Scholar] [CrossRef]
- Schindler, C.; Hagemann, S.G.; Banks, D.; Mernagh, T.; Harris, A.C. magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related telfer gold–copper deposit, paterson orogen, Western Australia: Pressure–temperature–composition constraints on the ore-forming fluids. Econ. Geol. 2016, 111, 1099–1126. [Google Scholar] [CrossRef] [Green Version]
- Fedorowich, J.; Stauffer, M.; Kerrich, R. Structural setting and fluid characteristics of the Proterozoic tartan lake gold deposit, trans-hudson orogen, northern Manitoba. Econ. Geol. 1991, 86, 1434–1467. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Kyser, T.K. Fluid inclusion and isotope systematics of the high-temperature Proterozoic Star Lake lode gold deposit, Northern Saskatchewan, Canada. Econ. Geol. 1991, 86, 1468–1490. [Google Scholar] [CrossRef]
- Ansdell, K.M.; Kyser, T.K. Mesothermal gold mineralization in a Proterozoic greenstone belt: Western Flin Flon Domain, Saskatchewan, Canada. Econ. Geol. 1992, 87, 1496–1524. [Google Scholar] [CrossRef]
- Poutiainen, M. Fluid inclusion geochemistry of the early Proterozoic Piril i gold deposit in Rantasalmi, southeastern Finland. Miner. Depos. 1993, 28, 129–135. [Google Scholar] [CrossRef]
- Field, M.P.; Kerrich, R.; Kyser, T.K. Characteristics of barren quartz veins in the Proterozoic La Ronge Domain, Saskatchewan, Canada: A comparison with auriferous counterparts. Econ. Geol. 1998, 93, 602–616. [Google Scholar] [CrossRef]
- Klein, E.L.; Fuzikawa, K.; Koppe, J.C.; Dantas, M.S.S. Fluid associated with the Caxias mesothermal gold mineralization, Sao Luis craton, northern Brazil: A fluid inclusion study. Rev. Bras. Geocienc. 2000, 30, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Xavier, R.P.; Coelho, C.E.S. Fluid regimes related to the formation of lode–gold deposits in Rio Itapicuru Greenstone Belt, Bahia: A fluid inclusion review. Rev. Bras. Geocienc. 2000, 30, 311–314. [Google Scholar] [CrossRef]
- Klein, E.L.; dos Santos, R.A.; Fuzikawa, K.; Angelica, R.S. Hydrothermal fluid evolution and structural control of the Guarim gold mineralisation, Tapajos Province, Amazonian Craton, Brazil. Miner. Depos. 2001, 36, 149–164. [Google Scholar] [CrossRef]
- Hein, K.A.A.; Zaw, K.; Mernagh, T.P. Linking mineral and fluid inclusion paragenetic studies: The Batman deposit, Mt. Todd (Yimuyn Manjerr) goldfield, Australia. Ore Geol. Rev. 2006, 28, 180–200. [Google Scholar] [CrossRef]
- Klein, E.L.; Harris, C.; Renac, C.; Giret, A.; Moura, C.A.; Fuzikawa, K. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, gurupi belt, northern Brazil. Miner. Depos. 2006, 41, 160–178. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Wygralak, A.S. Gold ore-forming of the Tanami region, Northern Australia. Miner. Depos. 2007, 42, 145–173. [Google Scholar] [CrossRef]
- Coullbaly, Y.; Boiron, M.C.; Cathelineau, M.; Kouamelan, A.N. Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaoure, Ivory Coast). J. Afr. Earth Sci. 2008, 50, 234–254. [Google Scholar] [CrossRef]
- Klein, E.L.; Ribeiro, J.W.A.; Harris, C.; Moura, C.A.V.; Giret, A. Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil. Econ. Geol. 2008, 103, 957–980. [Google Scholar] [CrossRef]
- Billstrom, K.; Broman, C.; Jonsson, E.; Recio, C.; Boyce, A.J.; Torssander, P. Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Bjorkdal Au deposit, northern Sweden. Intern. J. Earth Sci. 2009, 98, 1027–1052. [Google Scholar] [CrossRef]
- Klein, E.L.; Fuzikawa, K. Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: Implications for orogenic gold mineralization. Ore Geol. Rev. 2010, 37, 31–40. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Robb, L.; Foya, S.; Ishiyama, D. Mineralogical, fluid inclusion and stable isotope characteristics of Birimian orogenic gold mineralization at the Morila mine, Mali, West Africa. Ore Geol. Rev. 2011, 39, 218–229. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Treloqr, P.J.; Rankin, A.H.; Boyce, A.; Harbidge, P. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits. Econ. Geol. 2013, 108, 229–257. [Google Scholar] [CrossRef]
- de Freitas, S.C.F.; Klein, E.L. The mineralizing fluid in the Piaba gold deposit, São Luís cratonic fragment (NW-Maranhão, Brazil) based on fluid inclusion studies in quartz veins. Braz. J. Geol. 2013, 43, 70–84. [Google Scholar] [CrossRef]
- Tassinari, C.C.G.; Mateus, A.M.; Velásquez, M.E.; Munhá, J.M.U.; Lobato, L.M.; Bello, R.M.; Chiquini, A.P.; Campos, W.F. Geochronology and thermochronology of gold mineralization in the Turmalina deposit, NE of the Quadrilátero Ferrífero Region, Brazil. Ore Geol. Rev. 2015, 67, 368–381. [Google Scholar] [CrossRef]
- Klein, E.L.; Lucas, F.R.A.; Queiroz, J.D.S.; Freitas, S.C.F.; Renac, C.; Galarza, M.A.; Jourdan, F.; Armstrong, R. Metallogenesis of the Paleoproterozoic Piaba orogenic gold deposit, São Luís cratonic fragment, Brazil. Ore Geol. Rev. 2015, 65, 1–25. [Google Scholar] [CrossRef]
- Amponsah, P.O.; Salvi, S.; Beziat, D.; Siebenaller, L.; Baratoux, L.; Jessell, M.W. Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana. J. Afr. Earth Sci. 2015, 112, 505–523. [Google Scholar] [CrossRef]
- Morales, M.J.; Figueiredo e Silva, R.C.; Lobato, L.M.; Gomes, S.D.; Gomes, C.C.C.O.; Banks, D.A. Metal source and fluid–rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol. Rev. 2016, 72, 510–531. [Google Scholar] [CrossRef]
- Guha, J.; Leroy, J.; Guha, D. Significance of fluid phases associated with shear zone Cu–Au mineralisation in the Dore lake complex, Chibougamau, Quebec. Bull. Mineral. 1979, 102, 569–576. [Google Scholar] [CrossRef]
- Smith, T.J.; Cloke, P.L.; Kesler, S.E. Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario, Canada. Econ. Geol. 1984, 79, 1265–1285. [Google Scholar] [CrossRef]
- Santosh, M. Ore fluids in the auriferous champion reef of kolar, South India. Econ. Geol. 1986, 81, 1546–1552. [Google Scholar] [CrossRef]
- Studemeister, P.A.; Kilias, S. Alteration pattern and fluid inclusions of gold-bearing quartz veins in Archean trondjemite near Wawa, Ontario, Canada. Econ. Geol. 1987, 82, 429–439. [Google Scholar] [CrossRef]
- Burrows, D.R.; Spooner, E.T.C. Generation of a magmatic H2O–CO2 fluid enriched in Mo, Au, and W within an Archean sodic granodiorute stock, Mink Lake, northwestern Ontario. Econ. Geol. 1987, 82, 1931–1957. [Google Scholar] [CrossRef]
- Robert, F.; Kelly, W.C. Ore-forming fluids in archean gold-bearing quartz veins at the sigma mine, abitibi greenstone belt, Quebec, Canada. Econ. Geol. 1987, 82, 1464–1482. [Google Scholar] [CrossRef]
- Naumov, V.B.; Safonov, Y.G.; Mironova, O.F. Some regularities in spatial variations of the parameters of fluid of the Kolar gold deposit, India. Geol. Rudn. Mestorozhd 1988, 6, 105–109. [Google Scholar]
- Walsh, J.F.; Kesler, S.E.; Duff, D.; Cloke, P.L. Fluid inclusion geochemistry of high-grade, vein-hosted gold ore at the Pamour mine, Porcupine camp, Ontario. Econ. Geol. 1988, 83, 1347–1367. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Spooner, E.T.C.; De Wit, M.J.; Bray, C.J. Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa: Field and petrographic characteristics, fluid properties and light stable isotope geochemistry. Econ. Geol. 1992, 87, 366–402. [Google Scholar] [CrossRef]
- Samson, I.M.; Bas, B.; Holm, P.E. Hydrothermal evolution of auriferous shear zones, Wawa, Ontario. Econ. Geol. 1997, 92, 325–342. [Google Scholar] [CrossRef]
- Boullier, A.-M.; Firdaous, K.; Robert, F. On the significance of aqueous fluid inclusions in gold-bearing quartz vein deposits from the southeastern Abitibi subprovince (Quebec, Canada). Econ. Geol. 1998, 93, 216–233. [Google Scholar] [CrossRef]
- Mishra, B.; Panigrahi, M.K. Fluid evolution in the Kolar Gold Field: Evidence from fluid inclusion studies. Miner. Depos. 1999, 34, 173–181. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Luders, V. Antimony–gold mineralization at the epizonal Wiluna lode-gold deposits, Western Australia: Infrared microthermometric constraints on the P–T–X conditions of stibnite mineralization. In Terra Nostra ECROFI XV Abstract and Program; GeoForschungsZentrum (GFZ): Potsdam, Germany, 1999; pp. 140–142. [Google Scholar]
- Dugdale, A.L.; Hagemann, S.G. The Bronzewing lode–gold deposit, Western Australia: P–T–X evidence for fluid immiscibility caused by cyclic decompression in gold-bearing quartz-veins. Chem. Geol. 2001, 173, 59–90. [Google Scholar] [CrossRef]
- Olivo, G.R.; Williams-Jones, A.E. Genesis of the auriferous C quartz-tourmaline vein of the Siscoe mine, Val d’Or district, Abitibi subprovince, Canada: Structural, mineralogical and fluid inclusion constraints. Econ. Geol. 2002, 97, 929–947. [Google Scholar] [CrossRef]
- Polito, P.A.; Bone, Y.; Clarke, J.D.A.; Mernagh, T.P. Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: A process of fluid-wall-rock interaction? Aust. J. Earth Sci. 2001, 48, 833–855. [Google Scholar] [CrossRef]
- Blewett, R.S.; Huston, D.L.; Mernagh, T.P.; Kamprad, J. The diverse structure of Archean lode gold deposits of the southwest Mosquito Creek belt, East Pilbara Craton, Western Australia. Econ. Geol. 2002, 97, 787–800. [Google Scholar] [CrossRef]
- Neumayr, P.; Hagemann, S.G. Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: Relationship to auriferous fluids in adjacent second- and thir-order shear zones. Econ. Geol. 2002, 97, 1203–1225. [Google Scholar] [CrossRef]
- Pal, N.; Mishra, B. Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, Eastern Dharwar Craton, India. Miner. Depos. 2002, 37, 722–736. [Google Scholar] [CrossRef]
- Uemoto, T.; Ridley, J.; Mikucki, E.; Groves, D.I.; Kusakabe, M. Fluid chemical evolution as a factor in controlling the distribution of gold at the Archean Golden Crown lode gold deposit, Murchison province, Western Australia. Econ. Geol. 2002, 97, 1227–1248. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Luders, V. P–T–X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode–gold deposits, Western Australia: Conventional and infrared microthermometric constraints. Miner. Depos. 2003, 8, 936–952. [Google Scholar] [CrossRef]
- Poutiainen, M.; Partamies, S. Fluid evolution of the late Archaean Ramepuro gold deposit in the Ilomantsi greenstone belt in eastern Finland. Miner. Depos. 2003, 38, 196–207. [Google Scholar] [CrossRef]
- Zhou, T.; Phillips, G.N.; Denn, S.; Burke, S. Woodcutters goldfield: Gold in an archaean granite, Kalgoorlie, Western Australia. Aust. J. Earth Sci. 2003, 50, 553–569. [Google Scholar] [CrossRef]
- Baker, D.E.L.; Seccombe, P.K. Physical conditions of gold deposition at the McPhees deposit, Pilbara Craton, western Australia: Fluid inclusion and stable isotope constraints. Can. Miner. 2004, 42, 1405–1441. [Google Scholar] [CrossRef]
- Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite–komatiite contact at Tarmoola, Western Australia. Econ. Geol. 2004, 99, 423–451. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Heinrich, C.A.; Mikucki, E.J. Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia. Can. Miner. 2004, 42, 1383–1403. [Google Scholar] [CrossRef]
- Shelton, K.L.; McMenamy, T.A.; van Hees, E.H.P.; Falck, H. Deciphering the complex fluid history of greenstone-hosted gold deposit: Fluid inclusion and stable isotope studies of the Giant mine, Yellowknife, Northwest Territories, Canada. Econ. Geol. 2004, 99, 1643–1663. [Google Scholar] [CrossRef]
- Mishra, B.; Pal, N.; Sarbadhikari, A.B. Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India. Ore Geol. Rev. 2005, 26, 1–16. [Google Scholar] [CrossRef]
- Buchholz, P.; Oberthur, T.; Luders, V.; Wilkinson, J. Multistage Au–As–Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: A combined geochemical, mineralogical, stable isotope, and fluid inclusion study. Econ. Geol. 2007, 102, 347–378. [Google Scholar] [CrossRef]
- Mishra, B.; Pal, N. Metamorphism, fluid flux, and fluid evolution relative to gold mineralization in the Hutti-Maski greenstone belt, eastern Dharwar craton, India. Econ. Geol. 2008, 103, 801–827. [Google Scholar] [CrossRef]
- Baker, T.; Bertelli, M.; Blenkinsop, T.; Cleverley, J.S.; McLellan, J.; Nugus, M.; Gillen, D. P–T–X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids. Econ. Geol. 2010, 105, 873–894. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Bastrakov, E.N. An evaluation of hydrogen sulfide in orogenic gold fluids and the uncertainties associated with vapor-rich inclusions. Geofluids 2013, 13, 494–505. [Google Scholar] [CrossRef]
- Chinnasamy, S.S.; Uken, R.; Reinhardt, J.; Selby, D.; Johnson, S. Pressure, temperature, and timing of mineralization of the sedimentary rock-hosted orogenic gold deposit at Klipwal, southeastern Kaapvaal Craton, South Africa. Miner. Depos. 2015, 50, 739–766. [Google Scholar] [CrossRef] [Green Version]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Gold 2000 SEG Rev. 2000, 13, 141–162. [Google Scholar]
- Bodnar, R.J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-Maclnnes, P. Fluid inclusions in hydrothermal ore deposits. Reference module in earth systems and environmental sciences. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–142. [Google Scholar]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2019, 1–18. [Google Scholar] [CrossRef]
- Kesler, S.E.; Wilkinson, B.H. The role of exhumation in the temporal distribution of ore deposits. Econ. Geol. 2006, 101, 919–922. [Google Scholar] [CrossRef]
- Yardley, B.W.D.; Graham, J.T. The origins of salinity in metamorphic fluids. Geofluids 2002, 2, 249–256. [Google Scholar] [CrossRef]
Deposit, Region | Physicochemical Parameters of Fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Valdez Group, USA | 210–280 (2) | 0–6.0 | - | 1000–1500 (2) | CO2 + H2O | [6] |
Venus, Canada | 231–316 (45) | 1.8–5.4 | - | 250–2700 (37) | CO2 + H2O | [7] |
Monte Rosa gold district, Italy | 180–330 (19) | 1.0–10.1 | 0.86–0.93 | 1000–1500 (2) | CO2 + H2O | [8] |
Fairview, Oro Fino, Canada | 275–313 (2) | 2.7–4.7 | 0.73–0.78 | 800–1550 (7) | CO2 + H2O | [9] |
Twin Lakes Canada | 270–323 (2) | 1.2–8.6 | 0.77–0.78 | - | H2O | [9] |
Alaska-Juneau, USA | 150–300 (2) | 0.0–5.0 | - | 1000–2000 (2) | CO2 + H2O | [10] |
Ibex, USA | 150–300 (2) | 0.0–5.0 | - | 1000–2000 (2) | CO2 + H2O | [10] |
Reagan, USA | 150–280 (2) | 0.0–5.0 | - | 1000–2000 (2) | CO2 + H2O | [10] |
Treadwell, USA | 190–240 (2) | 5.0–8.0 | - | 800–1500 (2) | H2O | [10] |
Bralorne-Pioneer, Canada | 140–350 (10) | 0.8–5.0 | - | 500–1750 (4) | CO2 + H2O | [11] |
Monte Rosa gold district, Italy | 230–300 (2) | 1.2–1.9 | - | 600–1300 (2) | CO2 + H2O | [12] |
Bralorne-Pioneer, Canada | 150–390 (36) | 0.9–10.5 | 0.62–0.93 | - | H2O | [13] |
Callery, New Zealand | 300–350 (2) | 2.0 | - | 900–1200 (2) | CO2 + H2O | [14] |
Shotover, New Zealand | 160–200 (2) | 0.5 | - | 500–1000 (2) | CO2 + H2O | [14] |
Mt. Alta, New Zealand | 160–260 (2) | 2.0 | - | 500–1000 (2) | CO2 + H2O | [14] |
Nenthorn, New Zealand | 190 (1) | 2.0 | - | 150 (1) | CO2 + H2O | [14] |
Böckstein, Austria | 240–270 (8) | 5 | - | 700 (1) | CO2 + H2O | [15] |
Monte Rosa gold district, Italy | 250–300 (4) | 5 | - | 1000 (1) | CO2 + H2O | [15] |
Kensington, USA | 170–220 (2) | 5.0–8.0 | - | 900 (2) | CO2 + H2O | [16] |
Jualin, USA | 170–220 (2) | 6.5–9.0 | - | 900 (2) | CO2 + H2O | [16] |
Shannan area, China | 232–335 (4) | 4.0–15.0 | 0.68–0.95 | - | H2O | [17] |
Muteh, Iran | 156–305 (4) | 2.2–17.5 | - | - | CO2 + H2O | [18] |
Zopkhito, Georgia Republic | 185–380 (53) | 0.5–4.9 | 0.52–0.91 | - | H2O | [19] |
La Herradura, Mexico | 265–283 (7) | 3.5–4.1 | - | 670–2015 (7) | CO2 + H2O | [20] |
Daping, China | 279–424 (8) | 3.7–14.6 | 0.69–0.78 | 1335–3400 (2) | CO2 + H2O | [21] |
Mayum, China | 229–357 (19) | 1.2–5.8 | 0.65–0.84 | 1400–3500 (18) | CO2 + H2O | [22] |
Zhemulang, China | 146–292 (24) | 3.2–7.7 | 0.79–0.96 | - | H2O | [23] |
Mazhala, China | 148–303 (30) | 1.6–5.1 | 0.75–0.94 | - | H2O | [23] |
Qolqoleh, Iran | 204–386 (6) | 4.9–19.6 | - | 1600–2000 (2) | CO2 + H2O | [24] |
Bangbu, China | 167–336 (6) | 2.2–9.5 | 0.63–0.96 | - | H2O | [25] |
Deposit, Region | Physicochemical Parameters of Fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Oriental mine, USA | 280–340 (2) | 0.0–3.5 | – | 670–2500 | CO2 + H2O | [26] |
Big Hurrah mine, USA | 155–240 (9) | 2.2–6.8 | 0.88–0.95 | - | H2O | [27] |
Mouther Lode, USA | 290–350 (2) | 2.0 | - | 1000–2000 | CO2 + H2O | [28] |
Yata, China | 150–240 (2) | 5.0 | 0.86–0.96 | - | H2O | [29] |
Daeil, Korea | 243–375 (4) | 3.1–9.1 | 0.56–0.89 | - | H2O | [30] |
Macraes, New Zealand | 300–350 (2) | 1.0 | - | 2500–3500 | CO2 + H2O | [14] |
Glenorchy, New Zealand | 200–300 (2) | 1.0 | - | 2000 | CO2 + H2O | [14] |
Barewood, New Zealand | 300 | 1.0–2.0 | - | 2000 | CO2 + H2O | [14] |
Bendigo, New Zealand | <290 | 1.9 | - | >1000 | CO2 + H2O | [14] |
Bonanza, New Zealand | 200 | 1.5 | - | 800–1400 | CO2 + H2O | [14] |
Quartz Hill, USA | 375 (1) | 6.0 | - | 1350 | CO2 + H2O | [31] |
Lover Dominion, Canada | 296 (1) | 3.4 | - | - | H2O | [32] |
Aime, Canada | 263 (1) | 4.9 | - | 2300 (1) | CO2 + H2O | [32] |
Gold Run, Canada | 278–293 (2) | 4.0–4.3 | - | 1325–1500 (2) | CO2 + H2O | [32] |
Portland Creek, Canada | 255 (1) | 4.0 | - | - | H2O | [32] |
Lloid, Canada | 304–308 (2) | 3.8–4.3 | - | 870–1440 (2) | CO2 + H2O | [32] |
Hunker Dome, Canada | 310–332 (2) | 4.0–5.0 | - | 750–1250 (2) | CO2 + H2O | [32] |
Mitchell, Canada | 296–341 (4) | 2.4–6.1 | - | 450–875 (4) | CO2 + H2O | [32] |
Sheba, Canada | 281–341 (6) | 2.9–6.8 | - | 450–1800 (6) | CO2 + H2O | [32] |
Lone Star, Canada | 292 (1) | 3.2 | - | 300 | CO2 + H2O | [32] |
Hilchey, Canada | 297 (1) | 5.8 | - | 300 | CO2 + H2O | [32] |
27 Pup, Canada | 313 (1) | 3.5 | - | 300 | CO2 + H2O | [32] |
Violet, Canada | 225 (1) | 6.1 | - | 350 | CO2 + H2O | [32] |
Virgin, Canada | 198 (1) | 5.5 | - | 625 | CO2 + H2O | [32] |
Amethyst, Canada | 341 (1) | 1.2 | - | 350 | CO2 + H2O | [32] |
Samdong, Korea | 102–426 (24) | 2.7–14.0 | 0.88–0.94 | 1300–1900 (2) | CO2 + H2O | [33] |
Barneys Canyon, USA | 225–345 (2) | 1.5 | 0.60–0.85 | - | H2O | [34] |
Mouse Pass, USA | 210–360 | 1.0–3.0 | - | 1000–1500 | CO2 + H2O | [35] |
Nuka Bay, USA | 250–300 | 3.0–6.0 | - | 2300–3000 | CO2 + H2O | [35] |
Chichagof mine, USA | 225–250 | 6.0 | - | 1000 | CO2 + H2O | [35] |
Berners Bay, USA | 200–235 | 3.0–6.0 | - | 900 | CO2 + H2O | [35] |
Alaska-Juneau mine, USA | 300–375 | 0.0–5.0 | - | 1500–4000 | CO2 + H2O | [35] |
Treadwell mine, USA | 190–240 | 0.0–5.0 | - | 800–1500 | CO2 + H2O | [35] |
Sumdum Chief mine, USA | 240–320 | 0.0–5.0 | - | 800–1500 | CO2 + H2O | [35] |
Willow Creek, USA | 300–325 | 1.0–2.5 | - | - | H2O | [35] |
Valdez Creek, USA | 290–305 | - | - | 1000–2300 | CO2 + H2O | [35] |
Fairbanks, USA | 275–375 | 3.0–5.0 | - | - | H2O | [35] |
Ryan Lode, USA | 270–350 | 0.0–8.0 | - | 500–750 | CO2 + H2O | [35] |
Fort Knox, USA | 270–330 | 0.0–8.0 | - | 1250–1500 | CO2 + H2O | [35] |
Table Mountain, USA | 320–370 | 3.0–7.0 | - | - | H2O | [35] |
Rock Creek, USA | 184–272 | 5.0 | - | 1000–1400 | CO2 + H2O | [35] |
Chandalar, USA | 265–300 | 0.8–3.0 | - | 750–825 | CO2 + H2O | [35] |
Dongping, China | 195–340 (4) | 2.5–21.0 | 0.64–1.04 | - | H2O | [36] |
Niuxinshan, China | 180–336 (11) | 4.1–9.6 | 0.77–0.92 | 750–3700 (9) | CO2 + H2O | [37] |
Hanshan, China | 150–310 (5) | 3.1–10.7 | 0.72–0.95 | - | H2O | [38] |
Kyuchus, Russia | 118 (1) | 2.8 | 0.97 | - | H2O | [39] |
Svetloye, Russia | 145–215 (4) | 6.4–14.0 | 0.90–1.02 | - | H2O | [39] |
Tas-Uryakhskoye, Russia | 155 (1) | 2.0 | 0.93 | - | H2O | [39] |
Baidi, China | 172–266 (5) | 3.9–6.6 | 0.84–0.93 | - | H2O | [40] |
Banqi, China | 180–230 (2) | 3.2 | 0.86–0.91 | - | H2O | [40] |
Dongbeizhai, China | 120–170 (2) | 5.0 | 0.94–0.98 | - | H2O | [40] |
Gaolong, China | 125–290 (5) | 2.4–5.1 | 0.78–0.96 | - | H2O | [40] |
Gedang, China | 155–305 (4) | 3.4–6.0 | 0.77–0.94 | - | H2O | [40] |
Jinya, China | 143–270 (4) | 2.9–5.1 | 0.82–0.95 | - | H2O | [40] |
Lannigou, China | 160–253 (3) | 4.5–4.9 | 0.84–0.95 | - | H2O | [40] |
Mingshan, China | 136–185 (2) | 4.0–5.0 | 0.92–0.96 | - | H2O | [40] |
Shijia, China | 152–225 (3) | 1.9–6.7 | 0.87–0.93 | - | H2O | [40] |
Humboldt, USA | 170–340 (12) | 0.2–11.2 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Dun Glen, USA | 150–260 (4) | 1.0–8.8 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Santa Rose, USA | 200–360 (12) | 0.2–8.3 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Ten Mile, USA | 240–350 (2) | 1.0–7.9 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Eugene, USA | 170–330 (12) | 0.2–9.5 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Slumbering, USA | 180–330 (8) | 0.4–10.4 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Antelope, USA | 180–340 (8) | 0.2–8.4 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Trinity, USA | 195–300 (4) | 1.0–9.9 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Pine Forest, USA | 220–330 (8) | 0.4–16.7 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Pueblo, USA | 250–350 (4) | 0.8–17.5 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Jackson, USA | 100–230 (2) | 6.7–15.3 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Quinn River, USA | 170–330 (4) | 1.8–20.0 | - | 1200–2400 (2) | CO2 + H2O | [41] |
Wangu, China | 138–310 (14) | 3.0–6.0 | 0.73–0.97 | - | H2O | [42] |
Kuzhubao and Bashishan, China | 180–330 (8) | 0.8–13.0 | 0.77–0.90 | - | H2O | [43] |
Sanshandao, China | 150–355 (35) | 1.5–7.1 | 0.62–0.95 | 1200–2100 (46) | CO2 + H2O | [44] |
Dongping, China | 250–372 (33) | 4.7–8.9 | 0.64–0.87 | 600–1800 (31) | CO2 + H2O | [45] |
Donlin Creek, USA | 232–237 (2) | 6.3 | 0.88 | - | H2O | [46] |
Mayskoye, Russia | 119–515 (28) | 0.9–37.5 | 0.57–1.13 | 420–1240 (28) | CO2 + H2O | [47] |
Anjiayingzi, China | 160–338 (3) | 2.0–4.5 | - | - | CO2 + H2O | [48] |
Paishanlou, China | 128–447 (14) | 3.1–33.3 | 0.89–0.96 | 1400–1900 (2) | CO2 + H2O | [49] |
Denggezhuang, China | 80–388 (45) | 1.1–16.4 | 0.71–0.99 | H2O | [50] | |
Gubong, Korea | 201–432 | 0.4–17.3 | - | 670–2100 | CO2 + CH4 + H2O | [51] |
Rushan, China | 96–324 (4) | 0.2–12.6 | 0.80–1.04 | - | CO2 + H2O | [52] |
Baijintazi, China | 180–386 (10) | 6.9–13.2 | 0.72–0.97 | - | H2O | [53] |
Heijintaizi, China | 182–361 (15) | 6.7–18.5 | 0.85–0.94 | - | H2O | [53] |
Nezhdaninskoye, Russia | 129–378 (40) | 0.8–31.1 | 0.65–1.12 | 390–1840 (33) | CO2 + H2O | [54] |
Linglong, China | 80–360 (14) | 3.0–14.6 | 0.60–1.00 | - | H2O | [55] |
Sarylakh, Russia | 130–380 (3) | 0.5–6.4 | 0.62–0.94 | - | H2O | [56] |
Sentachan, Russia | 200–325 (2) | 5.7 | 0.73–0.91 | - | H2O | [56] |
Dyby, Russia | 226–495 (6) | 6.9–35.3 | 0.86–0.91 | 477–1495 (4) | CO2 + H2O | [57] |
Ergelyakh 1, Russia | 243–358 (5) | 3.7–32.7 | 0.84–0.98 | H2O | [57] | |
Ergelyakh 2, Russia | 264–304 (4) | 4.5–8.6 | 0.77–0.82 | 940–1140 (2) | CO2 + H2O | [57] |
Ergelyakh 3, Russia | 268 (1) | 3.6 | 0.80 | H2O | [57] | |
Arkachan, Russia | 250–385 (2) | 3.7–26.3 | 0.83–0.89 | 1300–1700 (2) | CO2 + H2O | [57] |
Kimpichenskoye Russia | 200 (1) | 32.0 | 1.13 | - | H2O | [58] |
Arkachan, Russia | 230–290 (4) | 12.0–20.0 | 0.87–0.99 | - | H2O | [58] |
Natalkinskoye, Russia | 205–359 (12) | 1.9–6.2 | 0.60–0.91 | 1120–2260 (13) | CO2 + H2O | [59] |
Rodionovskoye, Russia | 294–337 (2) | 6.8–7.3 | 0.87–0.95 | 1180–1530 (2) | CO2 + H2O | [60] |
Shuiyindong, China | 212–225 (2) | 4.7–6.3 | 0.89 | - | H2O | [61] |
Yata, China | 151–261 (9) | 2.1–7.2 | 0.85–0.94 | - | H2O | [61] |
Samgwang, Korea | 145–385 (13) | 0.1–11.2 | 0.70–0.93 | - | H2O | [62] |
Sentachan, Russia | 155–320 (11) | 1.6–7.4 | 0.82–1.03 | 1310–1960 (13) | CO2 + H2O | [63] |
Sarylakh, Russia | 170–312 (12) | 1.6–6.8 | 0.89–1.06 | 300–3430 (17) | CO2 + H2O | [63] |
Guodawa, Songweizi, Tonggoucheng, and Xiaomiaoshan, China | 115–335 (20) | 5.6–11.6 | 0.72–1.02 | - | H2O | [64] |
Shkolnoye, Russia | 189–350 (23) | 2.1–9.3 | 0.77–1.03 | 365–2320 (8) | CO2 + H2O | [65] |
Badran, Russia | 140–320 (3) | 4.5–10 | 0.80–0.96 | 100–2000 (2) | CO2 + H2O | [66] |
Pogromnoye, Russia | 283–363 (6) | 6.5–11.1 | 0.81–1.02 | 980–2800 (11) | CO2 + H2O | [67] |
Wenyu, China | 114–330 (12) | 0.1–12.8 | 0.63–0.98 | 850–1780 (4) | CO2 + H2O | [68] |
Banqi, China | 210–290 (2) | 2.3–4.2 | 0.77–0.87 | - | H2O | [69] |
Bojitian, China | 117–193 (3) | 0.5–6.9 | 0.93–0.95 | - | H2O | [69] |
Lannigou, China | 85–272 (8) | 0.5–8.7 | 0.85–0.97 | - | H2O | [69] |
Shuiyindong, China | 126–225 (5) | 0.2–6.3 | 0.89–0.95 | - | H2O | [69] |
Taipingdong, China | 172–269 (7) | 1.9–7.3 | 0.84–0.94 | - | H2O | [69] |
Yata, China | 106–231 (3) | 0.7–7.9 | 0.90–0.96 | - | H2O | [69] |
Zimudang, China | 95–273 (5) | 0.2–7.5 | 0.84–0.97 | - | H2O | [69] |
Yangzhaiyu, China | 175–313 (16) | 5.1–13.6 | 0.78–0.99 | - | CO2 + H2O | [70] |
Qianhe, China | 160–305 (64) | 6.1–21.8 | 0.93–0.95 | - | H2O | [71] |
Sanshandao, China | 112–350 (12) | 0.4–10.3 | 0.75–0.96 | - | H2O | [72] |
Jinshan China | 109–340 (15) | 0.6–8.9 | 0.70–0.96 | - | H2O | [73] |
Gatsuurt, Mongolia | 194–355 (10) | - | - | - | CO2 + H2O | [74] |
Taipingdong, China | 97–300 (8) | 0.02–8.1 | - | - | CO2 + H2O | [75] |
Zimudang, China | 99–300 (6) | 0.04–7.5 | - | - | CO2 + H2O | [75] |
Shuiyindong, China | 83–250 (8) | 0.02–6.9 | - | - | CO2 + H2O | [75] |
Bojitian, China | 80–198 (2) | 0.9–7.5 | - | - | H2O | [75] |
Wenyu, China | 114–417 (36) | 0.0–12.8 | - | 1570–2760 (6) | CO2 + H2O | [76] |
Sanshandao, China | 101–390 (6) | 0.2–18.4 | 0.75–0.78 | - | H2O | [77] |
Arkachan, Russia | 200–385 (19) | 3.7–26.3 | 0.84–1.07 | 1060–1830 (13) | CO2 + H2O | [78] |
Canan area, Honduras | 240–338 (8) | 0.9–6.2 | 0.68–0.83 | - | H2O | [79] |
Zhaishang, China | 92–372 (20) | 0.2–23.1 | 0.71–1.03 | 238–781 (20) | H2O | [80] |
Qiangma, China | 145–365 (18) | 0.0–12.7 | - | 1750–2810 (4) | CO2 + H2O | [81] |
Dongfeng, China | 117–341 (6) | 0.5–11.7 | 0.57–1.00 | 2260–3380 (2) | CO2 + H2O | [82] |
Linglong, China | 103–374 (8) | 0.3–13.3 | 0.82–1.01 | 2280–3360 (2) | CO2 + H2O | [82] |
Erdaogou, Xiaobeigou, China | 125–370 (46) | 0.9–17.4 | 0.81–0.98 | - | H2O | [83] |
Sanshandao, China | 101–390 (3) | 0.2–18.4 | 0.75–0.78 | - | H2O | [84] |
Anjiayingzi, China | 180–358 (11) | 1.3–15.6 | 0.82–0.91 | 500–1100 | CO2 + H2O | [85] |
Nancha, China | 132–432 (12) | 0.4–11.7 | 0.51–0.94 | 1520–3670 (3) | CO2 + H2O | [86] |
Taishang, China | 158–336 (39) | 0.2–9.1 | 0.73–0.92 | - | H2O | [87] |
Jinchangyu, China | 120–410 (10) | 3.0–28.3 | - | - | CO2 + H2O | [88] |
Hetai, China | 130–310 (4) | 2.7–13.9 | 0.70–1.02 | 500–1710 (4) | CO2 + H2O | [89] |
Liyuan, China | 136–408 (18) | 0.5–12.6 | 0.65–0.98 | 1310–3470 (4) | CO2 + H2O | [90] |
Baolun, China | 140–376 (6) | 3.0–9.0 | - | 1000–1600 (2) | CO2 + H2O | [91] |
Gezhen, China | 140–370 (8) | 0.5–10.5 | - | - | H2O | [91] |
Dongping, China | 154–382 (68) | 0.1–35.4 | - | 1000 (1) | CO2 + H2O | [92] |
Xiadian, China | 111–418 (16) | 0.2–22.9 | 0.61–1.11 | 400–2470 (4) | CO2 + H2O | [93] |
Luoshan, China | 212–393 (12) | 3.0–9.1 | 0.47–0.92 | 770–1850 (2) | CO2 + H2O | [94] |
Fushan, China | 211–380 (18) | 0.0–11.2 | 0.43–0.98 | 770–1850 (2) | CO2 + H2O | [94] |
Bake, China | 157–402 (12) | 2.2–13.7 | - | 460–800 (5) | CO2 + H2O | [95] |
Chanziping, China | 138–156 (18) | 1.8–11.9 | - | 400–960 (12) | CO2 + H2O | [95] |
Dagaowu, China | 176 (2) | 4.9–9.6 | - | 460 (1) | CO2 + H2O | [95] |
Fenshuiao, China | 178–183 (2) | 10.1–10.2 | - | 220–680 (2) | CO2 + H2O | [95] |
Gaokeng, China | 171 (2) | 6.5–10.5 | - | 450 (1) | CO2 + H2O | [95] |
Hamashi, China | 145–421 (3) | 2.9–13.1 | - | - | H2O | [95] |
Huangjindong, China | 225–397 (9) | 3.6–10.9 | - | 990 (2) | CO2 + H2O | [95] |
Huangshan, China | 156–350 (3) | 1.2–24.0 | - | 420–590 (2) | CO2 + H2O | [95] |
Huangtudian, China | 190–260 (2) | 6.6–6.9 | - | 390–480 (2) | CO2 + H2O | [95] |
Jinshan, China | 109–372 (53) | 0.6–16.5 | - | 350–950 (10) | CO2 + H2O | [95] |
Kengtou, China | 148–160 (2) | 6.4–9.1 | - | 390 (1) | CO2 + H2O | [95] |
Miaoxiafan, China | 158 (2) | 4.1–9.2 | - | 410 (1) | CO2 + H2O | [95] |
Mobin, China | 170–203 (9) | 9.3–2.1 | - | 210–790 (4) | CO2 + H2O | [95] |
Pingshui, China | 214–282 (6) | 1.2–8.7 | - | – | H2O | [95] |
Taojinchong, China | 107–352 (37) | 0.5–20.1 | - | 580–770 (2) | CO2 + H2O | [95] |
Tonggu, China | 97–300 (11) | 1.1–10.4 | - | - | H2O | [95] |
Tongshulin, China | 183 920 | 3.9–9.9 | - | 480 910 | CO2 + H2O | [95] |
Wangu, China | 138–310 (26) | 0.8–12.6 | - | - | H2O | [95] |
Xi’an, China | 147–325 (8) | 3.3–8.5 | - | 660 (1) | CO2 + H2O | [95] |
Xichong, China | 200–304 (5) | 6.1–7.5 | - | 480 (2) | CO2 + H2O | [95] |
Xintang, China | 125 (2) | 2.9–4.2 | - | 320 (1) | CO2 + H2O | [95] |
Yanghanwu, China | 151–185 (4) | 3.4–8.2 | - | 400–480 (2) | CO2 + H2O | [95] |
Deposit, Region | Physicochemical Parameters of Fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Hill End goldfield, Australia | 260–360 (2) | 2.4 | 0.59–0.80 | - | H2O | [96] |
Haut Allier, France | 260–420 (10) | 0.5–8.1 | 0.44–0.85 | - | H2O | [97] |
Kvartsytovye gorki, Kazakhstan | 255–305 (7) | 6.0–7.0 | 0.93–0.94 | 275–900 (4) | CO2 + CH4 + H2O | [98] |
Zholymbet, Kazakhstan | 255–345 (45) | 7.0–17.0 | 0.89–1.04 | 1000–2100 (4) | CO2 + H2O | [98] |
Bestobe, Kazakhstan | 270–315 (19) | 5.0–14.0 | 1.03–1.08 | 900–1600 (8) | CO2 + CH4 + H2O | [98] |
N. Aksu, Kazakhstan | 305–365 (20) | 12.0–17.0 | 0.94–1.01 | 1400–2600 (8) | CO2 + CH4 + H2O | [98] |
Stepnyak, Kazakhstan | 270–365 (14) | 11–13.0 | 0.96–1.03 | 1100–1800 (6) | CO2 + H2O | [98] |
S. Aksu, Kazakhstan | 190–345 (44) | 8.0–12.0 | 0.89–1.05 | 1200–2800 (8) | CO2 + CH4 + H2O | [98] |
Zhana–Tyube, Kazakhstan | 255–355 (43) | 9.0–12.0 | 0.88–1.08 | 1250–3500 (11) | CO2 + CH4 + H2S + H2O | [98] |
Flying Pig, Australia | 135–370 (32) | 1.1–10.1 | 0.56–0.96 | - | H2O | [99] |
Tyrconnel, Australia | 280 (1) | 4.7 | 0.8 | – | H2O | [99] |
Pataz region, Peru | 130–320 (9) | 7.0–37.5 | 0.76–1.06 | - | H2O | [100] |
Saralinskoye, Russia | 150–365 (8) | 6.3–29.3 | 0.77–1.07 | 770–2900 (12) | CO2 + CH4 + H2O | [101] |
Nagambie, Australia | 130–305 (7) | 3.7–6.4 | 0.76–0.96 | 850–1100 (2) | CO2 + H2O | [102] |
Kommunar, Russia | 210–340 (50) | 7.9–15.2 | 0.89–1.06 | 930–3500 (11) | CO2 + CH4, H2O | [103] |
Zarmitan, Uzbekistan | 270–380 (16) | 3.5–20.0 | 0.74–1.07 | 820–2730 (30) | CO2 + CH4 + H2O | [104] |
Deborah, Australia | 220–400 (3) | 0.1–10.0 | 0.65–0.93 | 2000–3000 (2) | CO2 + CH4 + H2O | [105] |
Sukhoi log, Russia | 165–380 (45) | 3.7–9.5 | 0.72–1.06 | 230–2450 (28) | CO2 + CH4 + N2 + H2O | [106] |
Berezovskoye, Russia | 270–365 (14) | 9.5–26.7 | 0.91–1.09 | 1470–3460 (21) | CO2 + H2O | [107] |
Fosterville, Australia | 170 (1) | 0.5 | 0.90 | - | H2O | [108] |
Vorontsovskoye, Russia | 100–150 (7) | 6.4–9.2 | 0.98–1.00 | - | H2O | [39] |
Biards district, France | 125–375 (6) | 1.7–7.4 | 0.54–0.97 | - | H2O | [109] |
Mayskoye, Russia | 100–455 (29) | 1.4–42.7 | 0.63–1.28 | - | CO2 + CH4 + H2O | [110] |
CSA deposit, Cobar, Australia | 200–350 (4) | 0.1–5.0 | 0.66–0.91 | 1500–2000 (4) | CO2 + H2O | [111] |
Moulin de Cheni, France | 150–250 (2) | 4.0–8.0 | 0.87–0.95 | - | H2O | [112] |
Jiapigou, China | 150–350 (4) | 0.7–6.5 | 0.58–0.93 | - | H2O | [113] |
Bulong, China | 160–395 (30) | 5.3–46.2 | 0.63–1.18 | - | H2O | [114] |
Charters Tauers, Australia | 80–305 (19) | 0.2–28.3 | 0.71–1.08 | - | H2O | [115] |
Sarekoubu, China | 255–395 (5) | - | - | - | CO2 + CH4 + H2O, H2O | [116] |
Qingshui, China | 155–355 (3) | 3.1–7.5 | 0.69–0.94 | - | H2O | [117] |
Tanjianshan, China | 120–320 (5) | 3.7–10.8 | 0.80–1.00 | - | CO2 + CH4 + H2O | [118] |
Sandwich Point, Canada | 150–335 (26) | 2.0–25.0 | 0.69–1.09 | - | CO2 + CH4 + H2O | [119] |
Fosterville, Australia | 119–264 | 0.1–10.7 | 0.88–0.95 | 1800–2400 | CO2 + CH4 + N2 + H2O | [120] |
Stawell-Magdala, Australia | 110–238 | 1.4–5.6 | 0.86–0.97 | H2O | [120] | |
Bendigo, Australia | 84–315 | 0.9–7.8 | 0.77–0.94 | 1400–1600 | CO2 + CH4 + N2 + H2O | [120] |
Wattle Gully, Australia | 70–225 | 1.5–6.3 | - | 1600 | CO2 + CH4 + N2 + H2O | [120] |
Maldon (1), Australia | 177–187 | 20.3–21.6 | 0.85–1.04 | - | H2O | [120] |
Maldon (2), Australia | 101–379 | 0.9–13.4 | 0.74–0.97 | - | H2O | [120] |
Mount Piper, Australia | 92–331 | 0.7–7.1 | 0.74–0.90 | - | H2O | [120] |
Woods Point, Australia | 129–279 | 1.6–4.0 | 0.78–0.95 | - | H2O | [120] |
Walhalla, Australia | 122–283 | 0.2–6.9 | 0.85–0.94 | - | H2O | [120] |
Bogunayskoye, Russia | 110–350 (88) | 0.2–49.0 | 0.73–1.22 | 100–1600 (31) | CO2 + CH4 + N2 + H2S, H2O | [121] |
Annage, China | 140–380 (42) | 0.5–22.0 | 0.71–1.02 | 790–1300 (2) | CO2 + CH4 + H2O | [122] |
Woxi, China | 178–357 (24) | 1.6–9.3 | 0.71–0.88 | - | H2O | [123] |
Huangshan, China | 127–376 (34) | 0.2–9.6 | 0.65–0.94 | 870–2610 (34) | CO2 + H2O | [124] |
Yingchengzi, China | 104–400 (12) | 1.1–12.4 | 0.62–0.97 | 80–3260 (9) | CO2 + H2O | [125] |
Limarinho, Portugal | 180–330 (6) | 3.0–7.3 | 0.73–0.91 | 600–3500 (6) | CO2 + CH4 + N2 + H2O | [126] |
Vasil’kovskoe, Kazakhstan | 120–550(90) | 2.0–20.0 | 0.46–0.96 | 200–2500 (68) | CO2 + CH4 + N2 + H2O | [127] |
Woxi, China | 109–396 (35) | 0.1–12.5 | - | 140–470 (10) | CO2 + H2O | [95] |
Sukoi Log, Russia | 130–385 (61) | 3.7–9.5 | 0.65–1.09 | 640–2630 (35) | CO2 + CH4 + N2 + H2O | [128] |
Verninskoye, Russia | 136–356 (31) | 1.4–8.1 | 0.84–1.05 | 570–3150 (10) | CO2 + H2O | [128] |
Dogaldyn, Russia | 128–339 (12) | 1.4–7.3 | 0.90–1.05 | 960–3230 (10) | CO2 + H2O | [128] |
Uryakh, Russia | 191–361 (7) | 2.5–9.1 | 0.94–1.08 | 1050–3290 (6) | CO2 + H2O | [128] |
Irokinda, Russia | 179–453 (31) | 3.9–46.3 | 0.97–1.15 | 840–5030 (8) | CO2 + H2O | [128] |
Deposit, Region | Physicochemical Parameters of Fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Olimpiadinskoye, Russia | 105–410 (2) | 1.9–28.7 | 0.68–0.93 | 255–3045 (29) | CO2 + CH4 + N2 + H2S, H2O | [129] |
Cachoeira de Minas, Sao Francisco, Brazil | 250–350 (2) | 6.0 | 0.68–0.86 | 2000 (1) | CO2 | [130] |
Veduga, Russia | 164–368 (12) | 8.2–19.3 | 0.72–1.04 | 120–1820 (8) | CO2 + CH4, CH4, H2O | [131] |
Olimpiadinskoye, Russia | 190–449 (10) | 4.8–17.4 | 0.67–0.92 | 450–2700 (11) | CH4, N2, CO2 + N2, H2O | [131] |
Harnas area, Sweden | 85–395 (84) | 3.0–19.0 | 0.48–1.11 | - | CO2, H2O | [132] |
Paiol mine, Brazil | 90–410 (16) | 3.0–33.0 | 0.81–1.07 | - | H2O | [133] |
Udereyskoye, Russia | 120–180 (2) | 30.3 | 1.12–1.20 | - | H2O | [56] |
Tunkillia, Nuckulla Hill, Barns, and Weednanna, Central Gawler Craton, Australia | 88–350 (18) | 0.1–23.0 | 0.68–1.13 | - | CO2, H2O | [134] |
Tarcoola gold field, S. Australia | 265–335 (9) | 1.6–6.7 | 0.69–0.92 | - | CO2 + CH4, H2O | [135] |
Telfer, Australia | 143–454 (135) | 2.0–50.0 | - | 1500–3000 (2) | CO2, H2O | [136] |
Deposit, Region | Physicochemical Parameters of Fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Tartan Lake, Canada | 250–390 (4) | 2.2–12.6 | 0.44–0.91 | 1200–2400 (2) | CO2, H2O | [137] |
Star Lake, Canada | 100–520 (112) | 0.5–42.1 | 0.30–1.40 | 1000–6300 (14) | CO2 + CH4, H2O | [138] |
Flin Flon Domain, Canada | 174–331 (20) | 0.4–16.2 | 0.65–1.01 | - | CO2, H2O | [139] |
Pirila, Finland | 130–325 (4) | 1.8–25.0 | 0.87–1.00 | 1500–1800 (2) | CO2 + CH4, H2O | [140] |
Star Lake (La Ronge), Canada | 160–340 (5) | 1.3–8.2 | 0.69–0.97 | - | CO2, H2O | [141] |
Caxias, Brazil | 205–378 (2) | 10.8 | 0.70–0.95 | 1600–3700 (3) | CO2 + N2, H2O | [142] |
Fazenda Canto, Brazil | 280–500 (6) | 2.6–4.0 | 0.72–0.93 | 1000–3500 (4) | CO2 + CH4 + N2, H2O | [143] |
Fazenda Maria Preta, Brazil | 320–420 (2) | - | - | 2100–4400 (2) | CO2 + CH4 + N2, H2O | [143] |
Fazenda Brasileiro, Brazil | 400–500 (7) | - | - | 1800–6500 (7) | CO2 + CH4 + N2, H2O | [143] |
Guarim, Brazil | 140–310 (4) | 5.6–5.7 | 0.76–0.97 | 860–2900 (4) | CO2 + CH4 + N2, H2O | [144] |
Batman, Australia | 242–458 (17) | 1.8–20.6 | 0.45–0.96 | - | CO2 + CH4, CH4, H2O | [145] |
Serrinha, Brazil | 280–430 (4) | 4.5–21.0 | 0.44–0.93 | 1300–3000 (2) | CO2 + CH4 + N2, H2O | [146] |
Callie, Australia | 48–404 (61) | 0.5–33.0 | 0.52–1.19 | - | CO2 + CH4 + N2, H2O | [147] |
Coyote Prospect, Australia | 183–434 (10) | 0.1–12.5 | 0.55–0.98 | - | CO2 + CH4 + N2, H2O | [147] |
Groudrust, Australia | 161–490 (9) | 0.2–13.9 | 0.49–0.97 | - | CO2 + CH4 + N2, H2O | [147] |
Tanami gold field, Australia | 101–452 (48) | 0.1–21.2 | 0.57–1.10 | - | CO2 + CH4 + N2, H2O | [147] |
Angovia, W. Africa | 156–370 (20) | 1.2–8.4 | 0.69–0.98 | 1050–1350 (2) | CO2 + CH4 + N2 | [148] |
Chega Tudo, Brazil | 100–371 (42) | 0.2–12.3 | 0.52–1.04 | 2000–3000 (2) | CO2 + CH4, CO2, H2O | [149] |
Bjorkdal, Sweden | 136–400 (13) | 2.2–14.0 | 0.55–1.01 | 500–1800 (2) | CO2, H2O | [150] |
Carara, Brazil | 264–346 (2) | 5.0–5.4 | 0.66–0.82 | 1800–3600 (2) | CO2 + CH4 + N2 | [151] |
Morila, W. Africa | 175–339 (8) | 3.0–20.3 | 0.65–1.03 | - | CH4 + N2, H2O | [152] |
Baboto, Mali, W Africa | 255–320 (3) | 1.5–10.7 | 0.80–0.81 | - | CO2 + CH4 + N2 + H2O | [153] |
Gara, Mali, W. Africa | 140–380 (15) | 4.5–57.1 | 0.78–1.24 | 750–2200 (4) | CO2 + CH4 + N2 + H2O | [153] |
Loulo–3, Mali, W Africa | 170–310 (12) | 0.2–11.7 | 0.75–0.93 | 1550 (1) | CO2 + CH4 + N2 + H2O | [153] |
Yalea, Mali, W. Africa | 175–519 (15) | 0.7–62.4 | 0.75–1.60 | 1450 (1) | CO2 + CH4 + N2 + H2O | [153] |
Piaba, Brasil | 183–377 | 2.5–7.2 | 0.96–0.99 | 1250–2080 | CO2 + CH4, H2O | [154] |
Turmalina, Brazil | 106–393 (18) | 0.2–23.8 | - | 1000–2000 | CO2, H2O | [155] |
Piaba, Brasil | 180–360 | 2.5–7.2 | - | 1500–2800 | CO2, H2O | [156] |
Julie, Ghana | 210–275 (28) | 1.9–8.6 | 0.41–0.99 | - | CO2, H2O | [157] |
Lamego, Brazil | 300–375 (18) | 2.0–9.0 | 0.68–0.94 | 2660–3500 (3) | CO2 + CH4 | [158] |
Deposit, Region | Physicochemical parameters of fluids | Reference | ||||
---|---|---|---|---|---|---|
T, °C | Salinity *, wt.% | d, g/cm3 | P, bar | Composition ** | ||
Henderson, Canada | 205–215 (2) | 31.5–32.0 | 1.11–1.25 | 330–1300 (12) | CO2 + H2O | [159] |
McInture-Hollinger, Canada | 175–348 (5) | 6.1–19.8 | 0.79–1.00 | - | CO2 + CH4 + N2 + H2O | [160] |
Kolar, India | 210–420 (14) | 3.0–12.0 | 0.70–0.85 | 1300–1600 (2) | CO2 | [161] |
Renabie, Canada | 161–360 (3) | 6.0–12.5 | 0.89–1.00 | 2550 (1) | CO2 + H2O | [162] |
Mink Lake, Canada | 250–345 (7) | 5.3–6.1 | 0.65–0.85 | - | CO2 + H2O | [163] |
Sigma, Canada | 60–395 (17) | 25.0–34.0 | 0.65–1.07 | 2000 (1) | CO2 + CH4, H2O | [164] |
Kolar, India | 235–340 (75) | - | 0.57–1.24 | 700–6400 (24) | CO2 + CH4 | [165] |
Pamour, Canada | 260–325 (7) | 3.5–6.0 | 0.70–0.81 | - | CO2 + CH4 | [166] |
Abbots, South Africa | 242–319 (2) | 6.4 | 0.74–0.87 | - | CO2 + CH4 + N2, H2O | [167] |
Bellevue, South Africa | 233–314 (2) | 4.8 | 0.75–0.87 | - | CO2 + CH4 + N2, H2O | [167] |
Pioneer, South Africa | 195–307 (4) | 1.8–8.5 | 0.73–0.93 | - | CO2 + CH4 + N2, H2O | [167] |
Surluga, Canada | 180–300 (30) | 1.0–23.0 | 0.90–1.01 | - | CO2 + CH4 + N2, H2O | [168] |
Sigma, Canada | 113–425 (8) | 1–40 | - | - | CO2 + CH4 + N2, H2O | [169] |
Donalda, Canada | 100–380 (6) | 4–41 | - | - | CO2 + CH4 + N2, H2O | [169] |
Dumont-Bras d’Or, Canada | 175–398 (6) | - | - | - | CO2 + CH4 + N2 | [169] |
Champion lode, Kolar, India | 138–421 (2) | 29.2–49.8 | 1.08–1.14 | 3150–3600 (2) | CO2, H2O | [170] |
Nundydroog mine, Kolar, India | 170–440 (4) | 5.0–30.0 | 0.86–1.13 | - | CO2, H2O | [170] |
Wiluna, W. Australia | 243 (1) | 23.2 | 1.02 | - | H2O | [171] |
Bronzewing, W. Australia | 103–445 (47) | 0.2–26.0 | 0.76–1.14 | - | CO2 + CH4, CH4, H2O | [172] |
Siscoe, Canada | 156–330 (6) | 2.0-9.0 | 0.67–0.98 | - | CO2 + H2O | [173] |
Junction, W. Australia | 69–400 (7) | 8.8–42.0 | 0.63–1.07 | 700–4400 (2) | CO2 + CH4, H2O | [174] |
Golden Eagle, Mosquito Creek belt, W. Australia | 99-374 (10) | 0.0–21.7 | 0.52–0.77 | - | CO2 + CH4, H2O | [175] |
Orenada 2, Canada | 65–195 (8) | 4.8-26.5 | 1.00–1.14 | - | CO2 + CH4, H2O | [176] |
Hutti, India | 300 (2) | 3.9–13.5 | 0.76–0.87 | 1000–1700 (2) | CO2 | [177] |
Golden Crown, W. Australia | 257–376 (2) | 2.3 | 0.48–0.82 | 500–3300 (6) | CO2 + H2O | [178] |
Wiluna, W. Australia | 146–319 (3) | 23.2–23.8 | 0.93–1.10 | 700–1680 (4) | CO2, H2O | [179] |
Ramepuro, E. Finland | 235–355 (3) | 6.5-10.0 | 0.67–0.91 | 1000 (1) | CO2 + CH4, CH4 | [180] |
Woodcutters field, W. Australia | 210–462 (4) | 5.7–14.1 | 0.76–0.90 | - | CO2, H2O | [181] |
McPhees, W. Australia | 106–410 (9) | 1.0–21.8 | 0.67–1.11 | - | CO2 + CH4 + N2, H2O | [182] |
Tarmoola, W. Australia | 261–335 (8) | 1.6–5.1 | 0.72–0.93 | - | CO2, H2O | [183] |
Mount Charlotte, Australia | 220–312 (5) | 4.5–5.7 | 0.74–0.89 | 1500–2200 (6) | CO2 + CH4, H2O | [184] |
Giant, Canada | 180–360 (4) | 4.0–9.0 | 0.60–0.96 | 1000–2000 (2) | CO2 + CH4, H2O | [185] |
Uti, India | 180–397 (8) | 0.5–22.0 | 0.55–1.01 | 930–2560 (4) | CO2 + H2O | [186] |
Primrose, Kwekwe, Zimbabwe | 222–280 (6) | 1.6–9.2 | 0.88–0.90 | 825–2780 (4) | CO2, H2O | [187] |
Jojo, Kwekwe, Zimbabwe | 145–219 (5) | - | 0.97–0.99 | 990–3100 (4) | CO2, H2O | [187] |
Indarama, Kwekwe, Zimbabwe | 80–144 (3) | 6.0–>22 | 1.02–1.23 | 1180–2850 (4) | CH4 + N2, H2O | [187] |
Hutti, India | 205–280 | 1.7–6.4 | - | 500–2000 | CO2 + CH4, H2O | [188] |
Hira-Buddini, India | 128–320 | 0.5–22 | 0.67–1.09 | - | CO2 + CH4, H2O | [188] |
Sunrise Dam, W. Australia | 198–433 (18) | 3.0–21.4 | 0.67–0.90 | 800–2930 (19) | CO2 + H2O | [189] |
Missouri, W. Australia | 61–402 (16) | 3.0–26.0 | 0.90–1.01 | 420–2630 (30) | CO2 + CH4 + H2S, CH4 | [190] |
Klipwal Gold Mine, South Africa | 115–367 (316) | 0.3–19.5 | 0.35–1.05 | 1100–2500 (4) | CO2 + CH4, H2O | [191] |
Age, Ma | Temperature, °C | Salinity, wt.% NaCl Equiv | n | Pressure, bar | n |
---|---|---|---|---|---|
Cenozoic 0–65 | 242 (128–424) | 3.6 (0.0–19.6) | 308 | 1305 (150–3600) | 106 |
Mesozoic 65–252 | 260 (80–515) | 5.9 (0.0–37.5) | 1478 | 1200 (100–4000) | 440 |
Paleozoic 2252–540 | 267 (70–550) | 7.3 (0.1–49.0) | 844 | 1500 (80–5030) | 375 |
Meso- and Neoproterozoic 540–1600 | 255 85–454 | 10.0 (0.1–50.0) | 181 | 1200 (120–3900) | 55 |
Paleoproterozoic 1600–2500 | 252 (48–520) | 7.1 (0.5–62.4) | 465 | 2080 (500–6500) | 57 |
Meso-Neoarchean 2500–3200 | 254 (50–462) | 6.1 (0.0–49.8) | 257 | 1680 (330–6400) | 135 |
Age, Ma | Temperature, °C | Salinity, wt.% NaCl Equiv | n | Pressure, bar | n |
---|---|---|---|---|---|
Cenozoic 0–65 | 255 (140–424) | 3.7 (0.5–14.6) | 58 | 1335 (500–3400) | 17 |
Mesozoic 65–252 | 277 (80–515) | 5.8 (0.01–37.5) | 585 | 1220 (190–3380) | 206 |
Paleozoic 252–540 | 280 (80–550) | 7.7 (0.2–28.3) | 342 | 1590 (150–3460) | 133 |
Meso- and Neoproterozoic 540–1600 | 275 (143–454) | 14.2 (1.0–50.0) | 51 | 1200 (120–3900) | 54 |
Paleoproterozoic 1600–2500 | 221 (48–510) | 13.2 (0.5–62.4) | 89 | 1500 (1250–2800) | 5 |
Meso-Neoarchean 2500–3200 | 280 (60–462) | 7.0 (0.1–49.8) | 69 | 2100 (700–6400) | 49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokofiev, V.Y.; Naumov, V.B. Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time. Minerals 2020, 10, 50. https://doi.org/10.3390/min10010050
Prokofiev VY, Naumov VB. Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time. Minerals. 2020; 10(1):50. https://doi.org/10.3390/min10010050
Chicago/Turabian StyleProkofiev, Vsevolod Yu., and Vladimir B. Naumov. 2020. "Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time" Minerals 10, no. 1: 50. https://doi.org/10.3390/min10010050
APA StyleProkofiev, V. Y., & Naumov, V. B. (2020). Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time. Minerals, 10(1), 50. https://doi.org/10.3390/min10010050