Next Article in Journal
Interaction Between FeOOH and NaCl at Extreme Conditions: Synthesis of Novel Na2FeCl4OHx Compound
Next Article in Special Issue
Fluid Inclusion Characteristics of the Kışladağ Porphyry Au Deposit, Western Turkey
Previous Article in Journal
The Geochronology and Geochemistry of Zircon as Evidence for the Reconcentration of REE in the Triassic Period in the Chungju Area, South Korea
Previous Article in Special Issue
Contrasting Fluids in the Svetlinsk Gold-Telluride Hydrothermal System, South Urals

Minerals 2020, 10(1), 50; https://doi.org/10.3390/min10010050

Review
Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time
1
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow 119017, Russia
2
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
*
Author to whom correspondence should be addressed.
Received: 2 December 2019 / Accepted: 2 January 2020 / Published: 5 January 2020

Abstract

:
This paper reviews data from numerous publications focused on the physicochemical parameters and chemical composition of ore-forming fluids from orogenic gold deposits formed during various geological epochs. The paper presents analysis of the distribution of the principal parameters of mineralizing fluids depending on the age of the mineralization. Some parameters of the fluids (their salinity and pressure) at orogenic gold deposits are demonstrated to systematically vary from older (median salinity 6.1 wt.%, median pressure 1680 bar) to younger (median salinity 3.6 wt.%, median pressure 1305 bar) deposits. The detected statistically significant differences between some parameters of mineralizing fluids at orogenic gold deposits are principally new information. The parameters at which mineralization of various age was formed are demonstrated to pertain to different depth levels of similar mineralization-forming systems. The fluid parameters of the most ancient deposits (which are mostly deeply eroded) correspond to the deepest levels of orogenic fluid systems. Hence, the detected differences in the salinity and pressure of the mineralizing fluids at orogenic deposits of different age reflect the vertical zoning of the mineralizing fluid systems.
Keywords:
orogenic gold deposit; mineralizing fluid; fluid inclusions; temperature; salinity; pressure; age; zonation

1. Introduction

Orogenic gold deposits are one of the world’s main groups of gold deposits that provide a source of gold ([1], etc.). Deposits of this class are formed in deformed and metamorphosed crustal blocks and terranes, typically in greenschist facies rocks adjacent to major crustal fault zones. Orogenic gold deposits were generated during a time span of more than 3 byr, from the Precambrian throughout the whole Phanerozoic [2]. It is thus interesting to understand how, and how much, the fluid regime (i.e., the physicochemical parameters and chemical composition of mineral-forming fluids) evolved over the Earth’s history when these deposits were formed.
To do this, we examined a database [3] that currently contains data compiled from a large quantity of publications on mineral-hosted fluid inclusions. Before these data were entered into the database, we tested them for suitability and reliability. Data on mineral-hosted fluid inclusions from gold deposits have been reported extensively in the economic geology literature during the past four to five decades. This information includes estimates of the composition and P–T parameters of the mineral-forming fluids, but also the age of the ore-forming processes. We analyzed these parameters in the database, as well as associated information on the volatile composition of orogenic gold-forming fluids for which reliable isotopic or geological age data were available. We have gathered information on more than 300 orogenic gold deposits of different age from 186 publications (Table 1), which illustrates how informative are our data on the physicochemical parameters of fluids for the whole class of orogenic gold deposits. More than 3500 conjugated estimations of homogenization temperatures and fluid salinities and more than 1100 conjugated estimations of temperatures and pressures are collected. Tables 2–7 provides information on the range of variations in fluid temperatures, salinity and pressures, the number of inclusions studied, and the chemical composition of the fluid. The deposits discussed herein (Table 1) were subdivided into the following five age groups: Meso-Neoarchean (3200–2500 Ma), Paleoproterozoic (2500–1600 Ma), Meso- and Neoproterozoic (1600–540 Ma), Paleozoic (540–250 Ma), Mesozoic (250–65 Ma), and Cenozoic (65–0 Ma). It is necessary to mention that data on Neo- and Mesoproterozoic gold deposits are relatively scarce; hence, we were not able to analyze this time span in more detail.
The parameters for the PTX of the fluids in the comprehensive database are for individual samples, if this information is available from the respective papers. In cases where many values for inclusion homogenization temperatures were reported for a given sample, the database presents an average value for the sample if the difference between the maximum and minimum temperature values is less than 50 °C. If this difference is equal to or greater than 50 °C, then both the maximum and the minimum temperature values are reported. Analogously, for the salinity measurements, we assume average values if the difference is less than 5 wt.% and use the maximum and minimum values if the difference is greater. For fluid pressure, average values are used if the difference is smaller than 10%, and, otherwise, the maximum and minimum values are reported.
Some publications on multiphase fluid inclusions containing saturated chloride brines quote homogenization temperatures as those when the gas bubble dissolved in the inclusion, despite the halite phase dissolving at a higher temperature. Because salinities in these inclusions were calculated from the NaCl solubility relationships, in the publications lacking reported halite dissolution temperatures, these data fall behind the saturation curve of aqueous solution with sodium chloride. To transform information on such inclusions into a reasonably accurate form, we quote their homogenization temperatures as the calculated homogenization temperatures of a saturated NaCl solution whose concentration is as specified in the paper.

2. Brief Description of the Deposits

For our analysis, we have selected deposits at which the arrangement of mineralized veins is controlled by tectonics. These are mostly deposits hosted in sedimentary or metamorphic rocks. The deposit was included in the sample if its geological characteristics did not contradict to the attributes of orogenic gold deposits formulated in the classical work [4]. In controversial cases, we included a deposit in the number of orogenic ones if it was considered orogenic in the review works of authoritative scientists, for example [5]. The resources and reserves of these deposits broadly vary from small (<10 tonnes) to superlarge (>1000 tonnes). In Table 1, deposits printed in bold face have gold reserves of 100 tonnes or more, and data for these were analyzed separately to determine what fluid parameters, if any, led to formation of such large deposits. Deposits data on which are absent from Table 1 are small- and medium-sized ones.
The evaluated gold deposits are listed in Table 1 in ascending order of their age (e.g., from younger to older) and, within a given epoch, in the chronological order of the publications, with data on the parameters and composition of the fluids.
Among the Cenozoic deposits, we discuss those in the United States, Canada, Italy, Austria, New Zealand, China, Iran, Georgia Republic, and Mexico. The data were compiled from nineteen publications and pertain to 26 gold deposits. Some of these deposits are large: Alaska-Juneau (USA), Bralorne-Pioneer (Canada), La Herradura (Mexico), and Daping (China).
The Mesozoic deposits are located in the United States, China, Korea, New Zealand, Russia, Mongolia, and Honduras. The data were borrowed from 70 publications and characterize 155 gold deposits. Among these, the following deposits are large: Samdong and Gubong (Korea), Dongping, Linglong, Wenyu, Sanshandao, Dongfeng, Taishang, Luoshan, and Jinshan (China), Kyuchus, Mayskoye, Nezhdaninskoye, Arkachan, Natalkinskoye (Russia), and Donlin Creek (USA).
The Paleozoic deposits occur in Australia, Kazakhstan, Peru, Russia, Uzbekistan, France, and Portugal. The data are from 33 publications and characterize 53 gold deposits. The large deposits are Zholymbet, Bestobe, S. Aksu, and Vasilkovskoye, (Kazakhstan), Zarmitan (Uzbekistan), Sukhoi Log, Verninskoye and Berezovskoye (Russia), and Bendigo, Charters Towers, and Telfer (Australia).
The Meso- and Neoproterozoic deposits are known in Russia, Brazil, Sweden, Australia. The data were extracted from seven publications and characterize twelve gold deposits. The large deposits among these are Olimpiadinskoye and Veduga (Russia), and Telfer (Australia).
The Paleoproterozoic deposits are known in Canada, Finland, Brazil, Australia, Sweden, West Africa, Mali, and Ghana. The data were collected from 22 publications and characterize 29 gold deposits. The large deposits among these are Callie (Australia), Morila and Yalea (Mali), and Piaba (Brazil).
Meso-Neoarchean deposits of this type are known in Canada, India, South Africa, Australia, Finland, and Zimbabwe. The data were taken from 33 publications and pertain to 35 gold deposits. The large deposits include McIntyre-Hollinger, Sigma, Pamour, Surluga, and Giant (Canada), Kolar, Hutti, Uti, and Hira-Buddini (India), and Wiluna, Junction, Golden Mile/Mount Charlotte, and Tarmoola (Australia).
Note that many of these deposits are world-class gold deposits with >100 tonnes Au. These giants include the ore fields of Kolar, India; Telfer, Bendigo, and Kalgoorlie, Australia; McIntyre-Hollinger, Canada; Vasilkovskoye, Zarmitan, Muruntau, and Kumtor, Central, Asia; Sanshandao and Linglong, China; and Natalkinskoye, Olimpiadinskoye, and Sukhoi Log, Russia.
Table 1. Orogenic gold deposit.
Table 1. Orogenic gold deposit.
Deposition *, CountryProvinceGold Content, Moz (Million Ounces)Gold Content, Metric TonsAge, MaReference
Cenozoic
Valdez Group, USASouth-central Alaska0.26850–55[6]
Venus, CanadaYukon Territory<0.16<570[7]
Monte Rosa gold district, ItalyNorthwestern Alps0.51520[8]
Fairview, Oro Fino, CanadaOkanagan Valley, British Columbia2.268Tertiary[9]
Twin Lakes, CanadaOkanagan Valley, British Columbia0.010.27Tertiary[9]
Alaska-Juneau, USAJuneau Gold Belt, Alaska3.410655[10]
Ibex, USAJuneau Gold Belt, Alaska<0.3<1055[10]
Reagan, USAJuneau Gold Belt, Alaska<0.3<1055[10]
Treadwell, USAJuneau Gold Belt, Alaska3.19655[10]
Bralorne-Pioneer, CanadaBritish Columbia4.112965[11]
Monte Rosa gold district, ItalyNorthwestern Alps0.51524–32[12]
Bralorne-Pioneer, CanadaBritish Columbia4.112965[13]
Callery, New ZealandBDT<0.16<5Quaternary[14]
Shotover, New Zealand <0.16<5Miocene[14]
Mt. Alta, New Zealand <0.16<5Miocene[14]
Nenthorn, New Zealand <0.16<5Paleocene–Eocene[14]
Böckstein, AustriaNorthwestern Alps<0.16<5Tertiary[15]
Monte Rosa gold district, ItalyNorthwestern Alps0.51524–32[15]
Kensington, USABerners Bay District, Southeast Alaska1.96055[16]
Jualin, USABerners Bay District, Southeast Alaska0.3955[16]
Shannan area ChinaS. Tibet0.9630Eocene[17]
Muteh, IranZagros0.451438.5–55.7[18]
Zopkhito, Georgia RepublicGreater Caucasus1.8554–5[19]
La Herradura, MexicoNorthwestern Mexico5.416861.0 ± 2.1[20]
Daping, ChinaYunnan Province>4.8>150Cenozoic[21]
Mayum, ChinaTibet>2.6>8059[22]
Zhemulang, ChinaLang County, Tibet<0.16<512–35[23]
Mazhala, ChinaCuomei County, Tibet<0.16<512–35[23]
Qolqoleh, IranSanandaj–Sirjan Zone, Kurdistan Province<0.3<10Early Tertiary[24]
Bangbu, ChinaSouthern Tibet1.340Cenozoic[25]
Mezocoic
Oriental mine, USACalifornia0.154.7120[26]
Big Hurrah, USAAlaska<0.3<1110[27]
Mouther Lode, USACalifornia1.753125[28]
Yata, ChinaGuizhou, Youjiang basin, S. China0.3210182–206[29]
Daeil, KoreaYoungdong dist.--145[30]
Macraes, New Zealand --Cretaceous[14]
Glenorchy, New Zealand --Cretaceous[14]
Barewood, New Zealand --Cretaceous[14]
Bendigo, New Zealand --Cretaceous[14]
Bonanza, New Zealand --Cretaceous[14]
Quartz Hill, USACalifornia0.13.7150[31]
Lover Dominion, CanadaKlondike, Yukon Territory--160[32]
Aime, CanadaKlondike, Yukon Territory--160[32]
Gold Run, CanadaKlondike, Yukon Territory--160[32]
Portland Creek, CanadaKlondike, Yukon Territory--160[32]
Lloid, CanadaKlondike, Yukon Territory--160[32]
Hunker Dome, CanadaKlondike, Yukon Territory--160[32]
Mitchell, CanadaKlondike, Yukon Territory--160[32]
Sheba, CanadaKlondike, Yukon Territory2.269160[32]
Lone Star, CanadaKlondike, Yukon Territory--160[32]
Hilchey, CanadaKlondike, Yukon Territory--160[32]
27 Pup, CanadaKlondike, Yukon Territory--160[32]
Violet, CanadaKlondike, Yukon Territory--160[32]
Virgin, CanadaKlondike, Yukon Territory--160[32]
Amethyst, CanadaKlondike, Yukon Territory--160[32]
Samdong, KoreaYoungdong mining district, Korea4.2132.4Jurassic[33]
Barneys Canyon, USAUtah0.4514147–159[34]
Mouse Pass, USAAlaska--95–110[35]
Nuka Bay, USAAlaska--95–110[35]
Chichago mine, USAAlaska--95–110[35]
Berners Bay, USAAlaska--95–110[35]
Alaska-Juneau mine, USAAlaska--95–110[35]
Treadwell mine, USAAlaska--95–110[35]
Sumdum Chief mine, USAAlaska--95–110[35]
Willow Creek, USAAlaska--95–110[35]
Valdez Creek, USAAlaska--95–110[35]
Fairbanks, USAAlaska--95–110[35]
Ryan Lode, USAAlaska--95–110[35]
Fort Knox, USAAlaska1.44595–110[35]
Table Mountain, USAAlaska--95–110[35]
Rock Creek, USAAlaska--95–110[35]
Chandalar, USAAlaska--95–110[35]
Dongping, ChinaHebei province>3.2>100153[36]
Niuxinshan, ChinaE. Hebei, NE China0.620166[37]
Hanshan, ChinaNW China1.960214–224[38]
Kyuchus, RussiaSakha-Yakutia5157Late Cretaceous[39]
Svetloye, RussiaSakha-Yakutia--Mesozoic[39]
Tas-Uryakhskoye, RussiaKhabarovsk1.340Cretaceous[39]
Baidi, ChinaChina--75–140[40]
Banqi, ChinaYoujiang basin China0.310182–206[40]
Dongbeizhai, ChinaChina2.2570Middle Jurassic[40]
Gaolong, ChinaChina0.825182–206[40]
Gedang, ChinaChina0.27182–206[40]
Jinya, ChinaSouth China platform130Cretaceous[40]
Lannigou, ChinaSouth China platform2.680182–206[40]
Mingshan, China 0.310182–206[40]
Shijia, China 0.31075–140[40]
Humboldt, USANorthwestern Nevada--Cretaceous[41]
Dun Glen, USANorthwestern Nevada--Cretaceous[41]
Santa Rose, USANorthwestern Nevada--Cretaceous[41]
Ten Mile, USANorthwestern Nevada--Cretaceous[41]
Eugene, USANorthwestern Nevada--Cretaceous[41]
Slumbering, USANorthwestern Nevada--Cretaceous[41]
Antelope, USANorthwestern Nevada--Cretaceous[41]
Trinity, USANorthwestern Nevada--Cretaceous[41]
Pine Forest, USANorthwestern Nevada--Cretaceous[41]
Pueblo, USANorthwestern Nevada--Cretaceous[41]
Jackson, USANorthwestern Nevada--Cretaceous[41]
Quinn River, USANorthwestern Nevada--Cretaceous[41]
Wangu ChinaHunan province0.41370[42]
Kuzhubao and Bashishan ChinaYunnan Province, Fu Ning district--Mesozoic?[43]
Sanshandao, ChinaNorth China platform, Jiaodong province3.4107Early Cretaceous[44]
Dongping, ChinaHebei province,3.2100153[45]
Donlin Creek, USANorthern Alaska24.777070[46]
Mayskoye, RussiaChukchi peninsula3.6114107–115[47]
Anjiayingzi, ChinaNorth China Craton1.135Mesozoic[48]
Paishanlou, ChinaNorth China Craton1.340124–126[49]
Denggezhuang, ChinaMuru Gold Belt in Eastern Shandong1.444Mesozoic[50]
Gubong, KoreaCheongyang gold district, Cheonan metallogenic province4.8150Early Cretaceous[51]
Rushan, ChinaJiaodong Peninsula>1>30117[52]
Baijintazi, ChinaDaduhe field, Tibetian Plateau0.041,2Mesozoic[53]
Heijintaizi, ChinaDaduhe field, Tibetian plateau0.051,5Mesozoic[53]
Nezhdaninskoye, RussiaSakha-Yakutia3.6114115–124[54]
Linglong, ChinaShandong Province4124Early Cretaceous[55]
Sarylakh, RussiaSakha-Yakutia1.340124[56]
Sentachan, RussiaSakha-Yakutia0.620Early Cretaceous[56]
Dyby, RussiaNE Russia0.9630125[57]
Ergelyakh 1, RussiaNE Russia0.13140–149[57]
Ergelyakh 2, RussiaNE Russia0.13140–149[57]
Ergelyakh 3, RussiaNE Russia0.13140–149[57]
Arkachan, RussiaW. Verkhoyanye3.2100Mesozoic[57]
Kimpichenskoye RussiaW. Verkhoyanye--Mesozoic[58]
Arkachan, RussiaW. Verkhoyanye3.2100Mesozoic[58]
Natalkinskoye, RussiaNE Russia3.2100135[59]
Rodionovskoye, RussiaNE Russia0.062Early Cretaceous[60]
Shuiyindong, ChinaGuizhou, Youjiang basin1.855182–206[61]
Yata, ChinaGuizhou, Youjiang basin, S. China0.3210182–206[61]
Samgwang, KoreaKorea2.372127[62]
Sentachan, RussiaSakha-Yakutia0.620Early Cretaceous[63]
Sarylakh, RussiaSakha-Yakutia1.340Early Cretaceous[63]
Guodawa, Songweizi, Tonggoucheng and Xiaomiaoshan, ChinaZhangbaling Tectonic belt--116–118[64]
Shkolnoye, RussiaNE Russia0.062135[65]
Badran, RussiaSakha-Yakutia0.4514Mesozoic?[66]
Pogromnoye, RussiaTransbaykalia1.650Late Jurassic[67]
Wenyu, ChinaNorth China Platform>3.2>100127[68]
Banqi, ChinaYoujiang basin0.3210182–206[69]
Bojitian, ChinaYoujiang basin S. China0.515182–206[69]
Lannigou, ChinaSouth China platform2.580182–206[69]
Shuiyindong, ChinaGuizhou, Youjiang basin1.855182–206[69]
Taipingdong, ChinaYoujiang basin1.857182–206[69]
Yata, ChinaGuizhou, Youjiang basin, S. China0.515182–206[69]
Zimudang, ChinaYoujiang basin, S. China1.960182–206[69]
Yangzhaiyu, ChinaNorth China Craton1.134124–141[70]
Qianhe, ChinaXiong’ershan area, North China Craton--124–135[71]
Sanshandao, ChinaJiaodong Peninsula, Shandong province3.4107Early Cretaceous[72]
Jinshan, Chinabetween the Yangtze and Cathaysia blocks, South China3.4107Mesozoic?[73]
Gatsuurt, MongoliaNorth Khentei Gold Belt, Central N Mongolia<1.6<50?178[74]
Taipingdong, ChinaHuijiabao gold district, Yangtze craton1.857182–206[75]
Zimudang, ChinaHuijiabao gold district, Yangtze craton1.960182–206[75]
Shuiyindong, ChinaHuijiabao gold district, Yangtze craton1.855182–206[75]
Bojitian, ChinaHuijiabao gold district, Yangtze craton0.515182–206[75]
Wenyu, ChinaNorth China Platform>3.2>100127[76]
Sanshandao, ChinaJiaodong gold province3.4107117.6 ± 3[77]
Arkachan, RussiaW. Verkhoyanye3.2100Mesozoic[78]
Canan area, HondurasLepaguare District, Central America--Late Cretaceous–Early Tertiary[79]
Zhaishang, ChinaMin–Li metallogenic belt, W Qinling Mountains>9.6>300220[80]
Qiangma, ChinaNorth China Craton>0.6>20130[81]
Dongfeng, China 5.1158125[82]
Linglong, China 4124125[82]
Erdaogou, Xiaobeigou, ChinaJiapigou gold province, NE China>3.2>100219–228[83]
Sanshandao, ChinaJiaodong gold province3.4107117.6 ± 3[84]
Anjiayingzi, ChinaNorth China Craton1.135Mesozoic[85]
Nancha, ChinaS. Jilin Province, northeast China0.620Mesozoic[86]
Taishang, ChinaJiaodong Peninsula, eastern China321000150–165[87]
Jinchangyu, ChinaNorth China Craton1.650219–233[88]
Hetai, ChinaHetai goldfield, Bay–Hangzhou Bay metallogenic belt<0.32<10Mesozoic[89]
Liyuan, ChinaCentral North China Craton<1<30125[90]
Baolun, ChinaHainan Province of South China0.620224–228[91]
Gezhen, ChinaHainan Province of South China--224–228[91]
Dongping, ChinaHebei province>3.2>100153[92]
Xiadian, ChinaJiaodong Peninsula0.514.6120–126[93]
Luoshan, ChinaJiaodong peninsula4.8149125[94]
Fushan, ChinaJiaodong peninsula0.515125[94]
Bake, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Chanziping, ChinaJiangnan Orogenic Belt, Yangtze Block0.6821130–144[95]
Dagaowu, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Fenshuiao, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Gaokeng, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Hamashi, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Huangjindong, ChinaJiangnan Orogenic Belt, Yangtze Block2.680130–144[95]
Huangshan, ChinaJiangnan Orogenic Belt, Yangtze Block0.9630130–144[95]
Huangtudian, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Jinshan, ChinaJiangnan Orogenic Belt, Yangtze Block9.6300130–144[95]
Kengtou, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Miaoxiafan, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Mobin, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Pingshui, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Taojinchong, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Tonggu, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Tongshulin, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Wangu, ChinaJiangnan Orogenic Belt, Yangtze Block2.785130–144[95]
Xi’an, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Xichong, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Xintang, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Yanghanwu, ChinaJiangnan Orogenic Belt, Yangtze Block--130–144[95]
Paleozoic
Hill End goldfield, AustraliaNew S. Wales1.856Early Carboniferous?[96]
Haut Allier, FranceMassif Central<0.16<5260[97]
Kvartsytovye gorki, KazakhstanN. Kazakhstan0.310Late Ordovician?[98]
Zholymbet, KazakhstanNW. Kazakhstan7.7240Late Ordovician?[98]
Bestobe, KazakhstanNW. Kazakhstan9.6300Late Ordovician?[98]
N. Aksu, KazakhstanNW. Kazakhstan0.165Late Ordovician?[98]
S. Aksu, KazakhstanNW. Kazakhstan14.5450Late Ordovician?[98]
Stepnyak, KazakhstanNW. Kazakhstan0.310Late Ordovician?[98]
Zhana-Tyube, KazakhstanNW. Kazakhstan0.310Late Ordovician?[98]
Flying Pig, AustraliaHodgkinson field0.020.5Carboniferous[99]
Tyrconnel, AustraliaHodgkinson field0.062Carboniferous[99]
Pataz district, Peru 0.02?0.5?305–321[100]
Saralinskoye, RussiaKuznetsk Alatau0.722Early to Late Silurian[101]
Nagambie, AustraliaVictoria0.27Silurian–Early Devonian[102]
Kommunar, RussiaKuznetsk Alatau1.649Silurian[103]
Zarmitan, UzbekistanSouth Tien Shan16500Syn- to post-Late Carboniferous[104]
Central and North Deborah, Australia 0.27Late Ordovician–middle Silurian[105]
Sukhoy log, RussiaBodaybo481500Paleozoic[106]
Berezovskoye, RussiaUral15466Early Silurian[107]
Fosterville, AustraliaVictoria0.165Devonian[108]
Vorontsovskoye, RussiaUral2.268Late Devonian to Late Carboniferous[39]
Biards district, FranceMassif Central0.134300–305[109]
Mayskoye, RussiaN. Karelia<0.03<1397 ± 15[110]
CSA Cobar, AustraliaCobar2.683Devonian[111]
Moulin de Cheni, FranceSaint-Yrieix district Massif Central0.824338[112]
Jiapigou, ChinaS. Jilin Province,1.960Paleozoic?[113]
Bulong, ChinaAkqi County, Southwest Tianshan0.031258[114]
Charters Tauers goldfield, AustraliaTasman Fold Belt, Quinsleend6.6207Early Devonian?[115]
Sarekoubu, Chinasouthern Altai, Xinjiang<0.16<5320.6 ± 4[116]
Qingshui, ChinaN. Xinjiang<0.16<5315 ± 18[117]
Tanjianshan, ChinaW. China2.373.9269–288[118]
Sandwich Point, CanadaSandwich Point Meguma Terrane, Nova Scotia0.051.6380[119]
Fosterville, AustraliaVictoria0.165Devonian[120]
Maldon, AustraliaVictoria1.856445[120]
Stawell-Magdala, AustraliaVictoria3.3105Ordovician[120]
Bendigo, AustraliaVictoria17.1533Ordovician–Silurian[120]
Wattle Gully, AustraliaVictoria0.412.9Ordovician[120]
Mount Piper, AustraliaVictoria<0.16<5Devonian[120]
Woods Point, AustraliaVictoria0.928Devonian[120]
Walhalla (Cohen’s Reef), AustraliaVictoria1.546Devonian[120]
Bogunayskoye, RussiaEnisey ridge1.959Paleozoic?[121]
Annage, ChinaQinghai Province, Kunlun orogenic belt<0.16<5Paleozoic?[122]
Woxi, ChinaHunan Province1.3542Paleozoic[123]
Huangshan, ChinaJiangshan-Shaoxing fault zone, South China0.310397 ± 34[124]
Yingchengzi, ChinaSouthern Heilongjiang Province, NE China<0.16<5434–472[125]
Limarinho, Portugalnorthern Portugal, Variscan Iberian Massif<0.16<5310–315[126]
Vasil’kovskoe, Kazakhstan 12.2380312–279[127]
Woxi, ChinaHunan Province, Jiangnan Orogenic Belt, Yangtze Block>1.3>40Paleozoic[95]
Sukoy Log, RussiaBaikal–Patom481500Paleozoic[128]
Verninskoye, RussiaBaikal–Patom5.8180Paleozoic[128]
Dogaldyn, RussiaBaikal–Patom0.618Paleozoic[128]
Uryakh, RussiaBaikal–Muya1.856Paleozoic[128]
Irokinda, RussiaBaikal–Muya1.960Paleozoic[128]
Meso- and Neoproterozoic
Olimpiadinskoye, RussiaYenisey fold belt11.7365594[129]
Cachoeira de Minas, Sao Francisco, BrazilBorborema Province<0.3<10750[130]
Veduga, RussiaYenisey fold belt4.8149600[131]
Olimpiadinskoye, RussiaYenisey fold belt11.7365594[131]
Harnas area, SwedenGrenville province0.0311200[132]
Paiol mine, BrazilAlmas Greenstone Belt, Tocantins State0.618535–702[133]
Udereyskoye, RussiaEnisey Ridge0.514.7Proterozoic[56]
Tunkillia, Nuckulla Hill, Barns, and Weednanna, AustraliaCentral Gawler Craton0.7221567–1596[134]
Tarcoola gold field, S. AustraliaCentral Gawler Craton0.722.71580[135]
Telfer, AustraliaPilbara19.0591590–640[136]
Paleoproterozoic
Tartan Lake, CanadaN. Manitoba0.131791[137]
Star Lake, CanadaLa Ronge region, Northern Saskatchewan0.123.91848[138]
Flin Flon Domain, CanadaTrans-Hudson orogeny, Saskatchewan0.6191791[139]
Pirila, FinlandScandinavian0.041.21810–1830[140]
Star Lake (La Ronge), CanadaLa Ronge region, Northern Saskatchewan0.3711.51848[141]
Caxias, BrazilSao Luis craton0.0311990–2009[142]
Fazenda Canto, BrazilSao Francisco craton, state of Bahia0.3101800–2200[143]
Fazenda Maria Preta, BrazilSao Francisco craton, state of Bahia0.5151800–2200[143]
Fazenda Brasileiro, BrazilSao Francisco craton, state of Bahia2.2701800–2200[143]
Guarim, BrazilTapajos province<0.3<101880[144]
Batman, AustraliaBurrell Creek Formation0.3101800–1835[145]
Serrinha, BrazilGranite-Related0.515.12160[146]
Callie, AustraliaDead Bullock Soak goldfield5.81801815–1825[147]
Coyote Prospect, AustraliaKilli Killi Formation0.45141790–1840[147]
Groudrust, AustraliaGranites goldfield0.722.71790–1840[147]
Tanami gold field, AustraliaMount Charles Formation1.650.91790–1840[147]
Angovia, W. Africathe Yaoure’ area of central Ivory Coast in the West African craton0.3102050–2250[148]
Chega Tudo, Brazilthe Gurupi belt of northern Brazil1.9602000[149]
Bjorkdal, SwedenSkellefte District, Northern Sweden0.6201780–1790[150]
Carara, BrazilGuiana Shield0.3102030[151]
Morila, MaliThe Birimian schist belts of West Africa7.02172095–2103[152]
Loulo 3, MaliLoulo mining district, Mali, West Africa1.032Proterozoic[153]
Gara, MaliLoulo mining district, Mali, West Africa3.197Proterozoic[153]
Yalea, MaliLoulo mining district, Mali, West Africa6.3195Proterozoic[153]
Gounkoto, MaliLoulo mining district, Mali, West Africa--Proterozoic[153]
Piaba, BrasilSão Luís cratonic fragment3.91202170–2240[154]
Turmalina, BrazilPitangui Shear Zone, Quadrilátero Ferrífero1.2371750[155]
Piaba, BrasilSão Luís cratonic fragment3.51092227–2240[156]
Julie, GhanaThe Leo Man Craton in West Africa1.0311980–2130[157]
Lamego, BrazilRio das Velhas greenstone belt, Quadrilátero Ferrífero0.4132041[158]
Meso-Neoarchean
Henderson, CanadaSuperior1.342Late Arhaean[159]
McInture-Hollinger, CanadaSuperior, Timmins31.79872673–2690[160]
Kolar, IndiaDharwar craton26.9838Late Arhaean[161]
Renabie, CanadaWawa belt, Superior1.3402722–2728[162]
Mink Lake, CanadaSuperior<0.03<12730[163]
Sigma, CanadaSuperior11.53582705[164]
Kolar, IndiaDharwar craton26.9838Late Arhaean[165]
Pamour, CanadaSuperior7.92472703–2725[166]
Abbots, South AfricaBarberton0.0040.123084–3126[167]
Bellevue, South AfricaBarberton0.010.33084–3126[167]
Pioneer, South AfricaBarberton0.154.553084–3126[167]
Surluga, CanadaSuperior12.43852744[168]
Sigma, CanadaSuperior11.53582705[169]
Donalda, CanadaSuperior<1.0<30Arhaean[169]
Dumont, CanadaSuperior<0.3<10Arhaean[169]
Champion lode, Nundydroog, Kolar, IndiaDharwar craton25.5794Late Archaean[170]
Wiluna, AustraliaYilgarn Block8.5265Archaean[171]
Bronzewing, AustraliaYilgarn Block2.784Archaean[172]
Siscoe, CanadaSuperior Abitibi, Ontario0.927Late Archaean[173]
Junction, AustraliaYilgarn Block6.7209Archaean[174]
Golden Eagle, AustraliaMosquito Creek belt, Pilbara Craton0.413.12850–2900[175]
Orenada 2, Cadillac tectonic zone, CanadaSuperior<1.0<302682–2691[176]
Hutti, IndiaDharwar craton17.15332510–2750[177]
Golden Crown, AustraliaMurchison province, Yilgarn Block1.133.52600–2800[178]
Wiluna, AustraliaWiluna greenstone belt, Yilgarn Block8.52652749[179]
Ramepuro, FinlandIlomantsi greenstone belt, Scandinavian province0.041.252700–2750[180]
Woodcutters field, AustraliaKalgoorlie district, Yilgarn Block38.61200Archaean[181]
McPhees, AustraliaPilbara Craton<0.3<102890–2950[182]
Tarmoola, AustraliaYilgarn Block3.71162620–2780[183]
Mount Charlotte, AustraliaYilgarn Block, Kalgoorlie4.0125Archaean[184]
Giant, CanadaSlave, Yellowknife greenstone belt7.92462660–2820[185]
Uti, IndiaDharwar craton12.94002576[186]
Primrose, ZimbabweKwekwe district, Midlands greenstone belt, Zimbabwe craton0.144.32600–2650[187]
Jojo, ZimbabweKwekwe district Midlands greenstone belt, Zimbabwe craton0.020.52600–2650[187]
Indarama, ZimbabweKwekwe district Midlands greenstone belt, Zimbabwe craton0.165.12600–2650[187]
Hutti, IndiaHutti-Maski greenstone belt, Dharwar craton>3.2>1002532[188]
Hira-Buddini, IndiaHutti-Maski greenstone belt, Dharwar craton6.42002532[188]
Sunrise Dam, AustraliaYilgarn Block1.236.72670[189]
Missouri, AustraliaYilgarn Block0.030.9Archaean[190]
Klipwal Gold Mine, South AfricaKlipwal Shear Zone, SE Kaapvaal Craton,0.5152863–2721[191]
Notes: * In Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7, deposits printed in bold face have gold reserves of 100 tonnes or more.

3. Characteristics of the Mineralizing Fluids

This section is devoted to characteristics of the fluid regime under which gold deposits of various age groups were formed, with the deposits discussed from youngest to oldest. For each group of deposits, we report the state of the fluids (homogeneous or heterogeneous), brief characteristics of their phases (H2O–salt solution, dense gas), and the principal parameters of the fluid inclusions (homogenization temperatures, salinity, and fluid trapping pressure).

3.1. Cenozoic Deposits

Characteristics of mineral-forming fluids are presented in Table 2 and shown in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5. The information includes 308 temperature and fluid salinity estimates and 106 pressure estimates. Some of these deposits were produced from homogeneously trapped aqueous-carbonic and generally low-salinity fluids that show no discernible evidence of unmixing (Zhemulang, Mazhala, and Bangbu, China; Muteh, Iran; and Zopkhito, Georgia Republic). However, most of these deposits were formed by heterogeneously trapped fluids, with one end-member being an aqueous-saline solution and the other being a high-density gas mixture dominated by CO2. The trapping temperatures for the fluids range from 128 to 424 °C (median 242 °C) and salinities range from 0.0 to 19.6 wt.% NaCl equiv. (median 3.6 wt.% NaCl equiv.) (Table 8). The fluid trapping pressures vary from 150 to 3600 bar (median 1305 bar). The aqueous-only fluid (not related to fluid unmixing) without traces of fluid heterogenization showed lower homogenization temperatures (146–390 °C) and slightly higher salinities (0.5–19.6 wt.% NaCl equiv) than those of the aqueous phase of the heterogeneous fluids (temperature of 128–124 °C, salinity 0.0–14.6 wt.% NaCl equiv).

3.2. Mesozoic Deposits

Data for mineral-forming fluids are summarized in Table 3 and portrayed in Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5. The information of the deposits comprises 1478 temperature and fluid salinity estimates and 440 pressure estimates. Some of these deposits were formed by homogeneously aqueous-carbonic fluid without evidence of unmixing. These include Big Hurrah, Willow Creek, Fairbanks, Table Mountain, and Donlin Creek, Alaska, USA; Yata, Dongping, Hanshan, Baidi, Banqi, Dongbeizhai, Gaolong, Gedang, Jinya, Lannigou, Mingshan, Shijia, Wangu, Kuzhubao, Bashishan, Anjiayingzi, Denggezhuang, Rushan, Baijintazi, Heijintaizi, Linglong, Shuiyindong, Guodawa, Songweizi, Tonggoucheng, Xiaomiaoshan, Bojitian, Lannigou, Taipingdong, Zimudang, Qianhe, Erdaogou, Xiaobeigou, Taishang, Jinchangyu, Gezhen, Hamashi, Pingshui, and Tonggu, China; Daeil and Samgwang, Korea; Lover Dominion and Portland Creek, Canada; Kyuchus, Svetloye, Tas-Uryakhskoye, and Kimpichenskoye, Russia; Gatsuurt, Mongolia; and Canan area, Honduras. The majority of deposits, however, trapped heterogeneous fluids below the appropriate solvi, with unmixing of H2O- and CO2-dominant fluid endmembers. Ore-forming fluids had temperatures of 80–515 °C (median 260 °C), salinities of 0.0 to 37.5 wt.% NaCl equiv. (median 5.9 wt.% NaCl equiv.), and pressures of 100 to 4000 bar (median 1200 bar) (Table 8). Just like the previous case, the pure aqueous fluids without traces of fluid heterogenization showed lower homogenization temperatures (80–421 °C) and slightly lower salinities (0.02–32.7 wt.% NaCl equiv) than those of the aqueous phase of the heterogeneous fluids (temperature of 92–515 °C, salinity 0.0–37.5 wt.% NaCl equiv).

3.3. Paleozoic Deposits

Parameters of fluids that produced orogenic gold deposits are summarized in Table 4 and Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 (844 temperature and fluid salinity estimates and 375 pressure estimates). Some of the deposits were formed in the one-phase fluid field above the appropriate solvi, including Hill End goldfield, Flying Pig, Tyrconnel, Charters Towers, Stawell-Magdala, Maldon, Mount Piper, Woods Point, and Walhalla, Australia; Haut Allier, Biards district, and Moulin de Cheni, France; Pataz region, Peru; Vorontsovskoye, Russia; and Jiapigou, Bulong, Qingshui, and Woxi, China. Most of them, however, formed from heterogeneous fluids, with H2O- and CO2-dominant fluid endmembers. The fluids forming the gold deposits had temperatures of 70 to 550 °C (median 267 °C), salinities of 0.1 to 49.0 wt.% NaCl equiv. (median 7.3 wt.% NaCl equiv.), and fluid pressure of 80–5030 bar (median 1500 bar) (Table 8). The comparison of homogeneous aqueous fluids with the aqueous phase of the heterogeneous fluids revealed the slightly narrower range of homogenization temperatures (92–455 °C) and salinities (0.2–46.2 wt.% NaCl equiv) of the first ones.

3.4. Meso- and Neoproterozoic Deposits

Table 5 and Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 show characteristics of the mineral-forming fluids of orogenic gold deposits. The information of the deposits comprises 181 temperature and fluid salinity estimates and 55 pressure estimates. A few of these deposits were formed in the one-phase fluid field above the appropriate solvi (e.g., Paiol mine, Brazil; and Udereyskoye, Russia). Most of the deposits were formed from fluids trapped in the two-phase field, with H2O- and CO2- or N2-dominant fluid endmembers. Ore-forming fluids for the gold deposits had ranges of temperature of 85–454 °C (median 255 °C), salinity of 0.1–50.0 wt.% NaCl equiv. (median 10.0 wt.% NaCl equiv.), and fluid pressure of 120–3900 bar (median 1200 bar) (Table 8). Again, as in the previous case, homogenization temperatures (90–410 °C) and salinities (3.0–33.0 wt.% NaCl equiv) are varied in the narrower ranges than the parameters of the aqueous phase of the heterogeneous fluids (temperature of 85–454 °C, salinity 0.1–50.0 wt.% NaCl equiv).

3.5. Paleoproterozoic Deposits

Table 6 and Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 show characteristics of the mineral-forming fluids of orogenic gold deposits. The information of the deposits comprises 465 temperature and fluid salinity estimates and 57 pressure estimates. These deposits typically contain fluid inclusions of two types: aqueous fluid of different salinity and homogeneous fluid of high-density gases. The gas inclusions are dominated by either CO2 or N2. Inclusions of the two types not always occur in association with one another, and hence, pressure was evaluated not for all of the deposits. Ore-forming fluids for the gold deposits had ranges of temperature of 48–520 °C (median 252 °C), salinity of 0.5–62.4 wt.% NaCl equiv. (median 7.1 wt.% NaCl equiv.), and fluid pressure of 500–6500 bar (median 2080 bar) (Table 8).

3.6. Meso-Neoarchean Deposits

Parameters for the fluids from orogenic gold deposits are summarized in Table 7 and Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5. A few deposits were produced by trapping of a homogeneous aqueous or gaseous fluid (e.g., Kolar and Hutti, India, and Wiluna, Australia), but most deposits formed by trapping of heterogeneous fluids, with H2O- and CO2- or CH4-dominant fluid endmembers. The ore-forming fluids had a temperature range of 50–462 °C (median 254 °C), salinity of 0.0–49.8 wt.% NaCl equiv. (median 6.1 wt.% NaCl equiv.), and fluid pressure of 330 to 6400 bar (median 1680 bar) (Table 8).
It should be noted that, for all time intervals under consideration, the parameters of fluids from which the large gold deposits (>100 tonnes Au) were formed do not differ from the total sample of corresponding time (Table 9).

4. Discussion

Table 8 and Table 9 summarize data on fluid parameters of orogenic deposits of different age. The compiled dataset was analyzed using binary temperature–salinity and pressure–temperature diagrams, histograms, and boxplot diagrams. In addition, the Student’s t-test was calculated in pairs for salinity and fluid pressure values to compare the average values of independent data samples, since the distribution of fluid parameters did not differ much from the normal distribution. The principal conclusions derived from this analysis are discussed below.
The binary plots indicate that the data of all of the discussed deposit-age-groups plot within a single field, with the ranges of the parameters shrinking from older to younger deposits mostly because of progressively narrower ranges of fluid pressure and salinity (Figure 1 and Figure 2). Some fluid parameters (salinity and pressure) systematically and notably vary depending on the age of the mineralization. At the same time, the homogeneous character of the fields and a single field for all data points of a given set indicate that the data are homogeneous (pertain to a single fluid system). This led us to suggest that most of the analyzed fluid systems belong to a single type: one that produces orogenic gold mineralization.
The histograms of the fluid homogenization temperatures (Figure 3) are unimodal, which also indicates that the dataset is homogeneous. They also show that that the temperature range of homogenization temperatures widens from the younger to older deposits.
Fluid salinity (Figure 4) are also shows unimodal distribution. The histograms for the Meso- and Neoarchean and Neoproterozoic show a very weak tendency toward bimodality, but the sets of data on these deposits are the smallest, and hence, the bimodality of these diagrams may be explained simply by the scarcity of the data in each of the sets. The salinity range generally widens with increasing age of the fluids, as also do the maximum salinity values. The histograms are skewed, with the maxima occurring in the regions of the minimum salinity values.
The pressure histograms (Figure 5) are generally also skewed unimodal, with maxima within the range of 500–2000 bar. Data on the Precambrian deposits are obviously scarcer than those on Phanerozoic ones. The maximum pressure values generally tend to increase from the younger to older deposits, which widens the range of the pressure values.
The boxplot diagrams provide more information for analysis of the distribution because they display the region in which half of the values plot and the maximum and minimum parameters, outliers, and the median and average values. For the temperature (Figure 6), most of the determined values obviously lie within the range of 200 to 300 °C. The medians, Q25 (first quartile), Q75 (third quartile), and the maximum homogenization temperature values slightly increase from the Cenozoic to Paleozoic. Simultaneously the ranges of the maximum and minimum values widen. No such tendencies were detected for the Precambrian fluids, but the ranges of all of the boundary values are similar. We detected small outliers only for the data on the Mesozoic and Paleozoic, which indicates that the whole dataset is homogeneous. The facts presented above seem to indicate that the orogenic fluid systems are thermostated, perhaps, because of their flow-through character.
The boxplot diagram for the salinity values (Figure 7) shows that most of these values group in the range of moderate concentrations and do not exceed 18 wt.%. However, the overall range of the concentrations is roughly twice as large, and some outliers correspond to even greater salinity values. It is interesting that the salinity values statistically significantly increase with increasing age of the deposits. This is seen in the monotonous increase in the median values, Q75, the maximum ranges, and the maximum outliers. The overall tendencies are slightly disturbed by data on the Meso- and Neoproterozoic, which define a local maximum, and by data of the Meso- and Neoarchean, which define a local minimum. However, as was mentioned above, these time periods are characterized by the smallest amounts of data. The deviations from the general tendency may be explained simply by the insufficiency of the factual material.
The boxplot diagram for the fluid pressures (Figure 8) shows that most of the pressure values almost do not vary and group within the range of 500 to 2500 bar. However, comparison of the maximum variation ranges and the maximum outliers shows a general increase in these parameters with increasing age of the deposits. The general tendency is slightly disturbed by data on the Meso- and Neoproterozoic and on the Meso- and Neoarchean, which define a local minimum. However, these time spans are characterized by scarce data (see above). The same conclusion is derived from the analysis of the median pressure values.
The results of the calculation of Student’s t-test for comparing the average values of fluid salinity and pressure, performed in pairs for all combinations, showed statistically significant differences between all samples under consideration. Below for an example are the results of an independent-samples Student’s t-test for comparison of characteristics of Cenozoic and Paleoproterozoic fluids. The significant difference was revealed between the scores of salinity values for Cenozoic and Paleoproterozoic fluids: mean value M = 4.29 wt.%, standard deviation SD = 0.168 and M = 9.208 wt.%, SD = 0.395, respectively; Student t-test for this pair t(771) = 11.47, and significance p = 0.00000. The obtained t value is significantly higher than the critical value of the Student t-test, which is 1.972, at a significance level of α = 0.05. These results show that the difference in Cenozoic and Paleoproterozoic average salinity values is statistically significant.
An analogous calculation was performed to compare values of pressure of Cenozoic and Paleoproterozoic fluids. The significant difference also was found in the scores of pressure values for Cenozoic and Paleoproterozoic fluids (M = 1380 bar, SD = 77.75) and (M = 2577 bar, SD = 187.50), respectively; t (161) = 5.90, p = 0.00000. The obtained t value, as in the previous case, greatly exceeds the critical value of the Student’s t-test, which is equal to 1.975, at a significance level α = 0.05. This proves that the differences in the mean pressures of the Cenozoic and Paleoproterozoic fluids are statistically significant.
We did not detect any differences in the parameters of fluids from the large deposits relative to those from the smaller ones (Table 9).
In considering information not shown in the diagrams but discussed in literature following three types of fluid can be distinguished: (1) heterogeneous fluid, which is mixture of dense gaseous fluid and liquid aqueous salt fluid; (2) homogeneous aqueous salt fluid; and (3) homogeneous dense gaseous fluid, which can contain variable proportions of CO2, CH4, and N2. The phase composition of the fluids seems to also correlate with the age. The fluids at the young deposits correspond to types (1) and (2), whereas fluids at the Precambrian deposits can be of any of the three type.
Orogenic gold deposits are major exploration targets and global gold producers, and are thus actively studied using various microanalytical techniques. In addition to hundreds of papers on the fluid regime of individuals gold deposits, three significant reviews have been published on fluid inclusion features of orogenic gold deposits worldwide [4,192,193].
A principal conclusion formulated by [192] can be summarized as that orogenic gold deposits are produced from heterogeneous fluids consisting of a high-density gas phase, dominantly CO2, and an aqueous solution with relatively low salt concentrations. This conclusion generally does not contradict our analysis and most of the orogenic gold deposits evaluated here some 20 years later continue to show these features. However, a notable number of the deposits were formed from a homogeneous fluid. Moreover, some orogenic gold deposits were generated from chloride brines (e.g., Gara and Yalea, Mali; Telfer, Australia; Irokinda, Russia). This provides evidence to argue that a heterogeneous ore-forming fluid and a low salinity may not necessarily be inherent to fluids required to form orogenic gold deposits.
Another review [4] is even more extensive, but the principal conclusions remain the same. This review suggests that trapped chlorine brines these are low-temperature fluid inclusions that are not related to the ore-forming process but rather reflect the influx of pore water solutions into the hydrothermal system. Based on our comprehensive review of the existing literature, we argue that fluid inclusions with high-temperature chloride brines documented at some of the deposits (Gara and Yalea, Mali; Telfer, Australia; Irokinda, Russia; etc.) were trapped when the host quartz crystallized simultaneously with the native gold. These more saline ore fluids are also not equally observed in deposits of different ages but appear to be significant only during certain epochs. It is also reasonable to suggest that the ability of fluid at orogenic gold deposits to carry gold only insignificantly depends on the chemical composition of this fluid. Indeed, both chloride and hydrocarbonate (containing CO2 and CH4) fluids were found in variable proportions (up to the dominance of either the oxidized or the reduced species) at the deposits.
Key-idea idea stressed throughout the third review [193] is that the composition of the inclusions may have changed during the post-mineral history of the mineralization, when the deposits were exhumed. These changes may reflect both post-entrapment modifications of fluid inclusions (e.g., necking, leackage, etc.) or overprinting by of later generations of secondary inclusions during the exhumation. This is an important conclusion, which undoubtedly requires consideration for a meaningful interpretation of fluid inclusion data. However, the more reliable publications on fluid inclusions, to which our review is devoted, soundly demonstrate compiled data reflect the ore-forming process. It is thus reasonable to suggest that the evaluated parameters here do pertain to the origin of the gold ores and not to post-ore processes. The other important conclusion that follows from analysis of the paper by [194], which reviews both data on fluid inclusions and stable isotopes, is that the orogenic gold ore-forming fluids may have originated from more than one crustal source reservoir.
Our data generally do not contradict earlier reviews [4,192,193] and slightly append them. At the same time, the detected statistically significant differences in some parameters of mineralizing fluids at orogenic gold deposits of different age is principally new information, which deserves adequate understanding.
We think that it is hardly probable that similar hydrothermal processes that produced deposits of the same genetic type could principally change through the Earth’s history. Analysis of geological descriptions in all of the publications indicates that there were no cardinal differences between the geological structures of orogenic deposits formed at different time. These are commonly vein- or stringer-hosted gold mineralization in sedimentary or metamorphic rocks. The metamorphic rocks are usually metamorphosed to the greenschist or, sometimes (for the Archean deposits) amphibolite facies.
To understand the trends and relations described above, one has to recall that orogenic fluid systems operate within a broad range of depths: from a few to 25 km [1,2], and the deposits are now variably exhumed and eroded. This is in good agreement with the current model of orogenic gold deposits (Figure 9) [194]. The depths of erosion of younger deposits are, in general, shallower than those of older deposits, as was demonstrated using extensive information in [195], a paper aimed to explain why there are no ancient epithermal deposits. Epithermal deposits are formed at shallow depths, whereas orogenic deposits were produced at much greater ones. Because of this, most Cenozoic gold deposits occur at various depths, and only some of them are exposed by erosion in areas of young orogenic processes (for example, in Tibet). The older an orogenic gold deposit, the greater depth of its erosion. Archean deposits in India are eroded to the greatest depths and are the world’s deepest orogenic gold deposits (“hypozonal” according to [194]). Fluid pressures higher than 6 kbar were detected at these deposits [165]. In addition, one shall keep in mind that our statistical analysis of fluid parameters was carried out for fairly long-time spans. The depths of erosion of the deposits of each of the age groups can thus significantly vary and, hence, also affect the scatter of parameters within the groups. Because of this, statistically significant values in the boxplots are not the maximum parameters in the ranges but also outliers.
There can be different reasons for the increase in the salinity of fluids at orogenic deposits with depth. It is pertinent to recall that deep crustal high-temperature and high-pressure zones typically host chloride brines as pore waters [196]. This sheds light on why they are recognized in the deeper parts of orogenic gold fluid systems, as is reflected in the occurrence of brine-bearing fluid inclusions in the older gold deposits. At shallower levels, the systems may also undergo input of less mineralized fluids of a different nature. Another possible explanation of the occurrence of high-temperature brines in orogenic fluid systems may be the involvement of magmatic fluids in the mineral-forming processes [153].
We believe that the aforementioned differences we detected between parameters and composition of mineral-forming fluids at orogenic gold deposits reflect the vertical zoning of the mineralizing fluid systems of orogenic gold deposits. This zoning can remain unidentified or ignored when a single deposit is studied, but it becomes quite obvious when the whole ranges of the parameters of such deposits are studied. This zoning has nevertheless never been mentioned before with reference to orogenic mineralizing systems and shall be taken into account when these deposits are studied.

Supplementary Materials

The following are available online at https://www.mdpi.com/2075-163X/10/1/50/s1.

Author Contributions

V.Y.P.—the idea of the article, the grouping of deposits by the time of their formation, statistical processing and writing of the text. V.B.N.—browse the literature, select the necessary publications, fill out the database. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Program no. 48 of the Russian Academy of Sciences and the Scientific Program of IGEM RAS.

Acknowledgments

The authors would like to thank Richard Goldfarb for his assistance in the expert evaluation of the types of gold deposits.

Conflicts of Interest

The authors declare no conflict of interes.

References

  1. Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
  2. Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
  3. Naumov, V.B.; Dorofeeva, V.A.; Mironova, O.F. Principal physicochemical parameters of natural mineral-forming fluids. Geochem. Intern. 2009, 47, 777–802. [Google Scholar] [CrossRef]
  4. Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
  5. Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
  6. Goldfarb, R.J.; Leach, D.L.; Miller, M.L.; Pickthorn, W.J. Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska. Turbid. Hosted Gold Depos. Geol. Assoc. Can. Spec. Pap. 1986, 32, 87–105. [Google Scholar]
  7. Walton, L.A. Geology and Geochemistry of the Venus Au–Ag–Pb–Zn Deposit, Yukon Territory. Master’s Thesis, The University of Alberta, Edmonton, AB, Canada, 7 May 1987. [Google Scholar]
  8. Lattanzi, P.F.; Curti, E.; Bastogi, M. Fluid inclusions studies on the gold deposits on the upper anzasca Valley, northwestern alps, Italy. Econ. Geol. 1989, 84, 1382–1397. [Google Scholar] [CrossRef]
  9. Zhang, X.; Nesbitt, B.E.; Muehlenbachs, K. Gold mineralization in the Okanagan Valley, southern British Columbia: Fluid inclusion and stable isotope studies. Econ. Geol. 1989, 84, 410–424. [Google Scholar] [CrossRef]
  10. Goldfarb, R.J.; Leach, D.L.; Rose, S.C.; Landis, G.P. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska—Implications for ore genesis. Econ. Geol. Monogr. 1989, 6, 363–375. [Google Scholar]
  11. Leitch, C.H.B. Geology, Wallrock Alteration, and Characteristic of the Ore Fluid at the Bralorne Mesothermal Gold Vein Deposit, Southwester British Columbia. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 25 April 1989. [Google Scholar]
  12. Diamond, L.W. Fluid inclusions evidence for P–V–T–X evolution hydrothermal solutions in late-alpine gold-quartz veins at Brusson, Val d’Ayas, Northwest Italian Alps. Am. J. Sci. 1990, 290, 912–958. [Google Scholar] [CrossRef]
  13. Leitch, C.H.B.; Godwin, C.I.; Brown, T.H.; Taylor, B.E. Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada. Econ. Geol. 1991, 86, 318–353. [Google Scholar] [CrossRef]
  14. Craw, D. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand. Chem. Geol. 1992, 98, 221–236. [Google Scholar] [CrossRef]
  15. Craw, D.; Teagle, D.A.H.; Belocky, R. Fluid immiscibility in Late-Alpine gold-bearing veins, Eastern and Northwestern European Alps. Miner. Depos. 1993, 28, 28–36. [Google Scholar] [CrossRef]
  16. Miller, L.D.; Goldfarb, R.J.; Snee, L.W.; Cent, C.A.; Kirkham, R.A. Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay district, southeast Alaska. Econ. Geol. 1995, 90, 343–368. [Google Scholar] [CrossRef]
  17. Li, G.M.; Qin, K.Z.; Ding, K.S.; Liu, T.B.; Li, J.X.; Wang, S.H.; Jiang, S.Y.; Zhang, X.C. Geology, Ar–Ar age and mineral assemblage of Eocene Skarn Cu–Au ± Mo deposits in the southeastern gangdese arc, southern tibet: Implications for deep exploration. Resour. Geol. 2006, 56, 315–336. [Google Scholar] [CrossRef]
  18. Moritz, R.; Ghasban, F.; Singer, B.S. Eocene gold ore formation at muteh, sanandaj-sirjan tectonic zone, western iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the zagros orogen. Econ. Geol. 2006, 101, 1497–1524. [Google Scholar] [CrossRef]
  19. Kekelia, S.A.; Kekelia, M.A.; Kuloshvili, S.I.; Sadradze, N.G.; Gagnidze, N.E.; Yaroshevich, V.Z.; Asatiani, G.G.; Doebrich, J.L.; Goldfarb, R.J.; Marsh, E.E. Gold deposits and occurrences of the greater caucasus, georgia republic: Their genesis and prospecting criteria. Ore Geol. Rev. 2008, 34, 369–386. [Google Scholar] [CrossRef]
  20. Ruiz, F.J.Q. La Herradura ore deposit: An orogenic gold deposit in Northwestern Mexico. Master’s Thesis, University of Arisona, Tucson, AZ, USA, 4 May 2008. [Google Scholar]
  21. Sun, X.M.; Zhang, Y.; Xiong, D.X.; Sun, W.D.; Shi, G.Y.; Zhai, W.; Wang, S.W. Crust and mantle contributions to gold-forming process at the daping deposit, ailaoshan gold belt, Yunnan, China. Ore Geol. Rev. 2009, 36, 235–249. [Google Scholar] [CrossRef]
  22. Jiang, S.H.; Nie, F.J.; Hu, P.; Lai, X.R.; Liu, Y.F. Mayum: An orogenic gold deposit in Tibet, China. Ore Geol. Rev. 2009, 36, 160–173. [Google Scholar] [CrossRef]
  23. Zhai, W.; Suna, X.; Yi, J.; Zhang, X.; Mo, R.; Zhou, F.; Wei, H.; Zeng, Q. Geology, geochemistry, and genesis of orogenic gold—Antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol. Rev. 2014, 58, 68–90. [Google Scholar] [CrossRef]
  24. Taghipour, B.; Ahmadnejad, F. Geological and geochemical implications of the genesis of the qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). Geologos 2015, 21, 31–57. [Google Scholar] [CrossRef]
  25. Sun, X.; Wei, H.; Zhai, W.; Shi, G.; Liang, Y.; Mo, R.; Han, M.; Yi, J.; Zhang, X. Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geol. Rev. 2016, 74, 196–210. [Google Scholar] [CrossRef]
  26. Coveney, R.M., Jr. Gold quartz veins and auriferous granite at the oriental mine, alleghany district, California. Econ. Geol. 1981, 76, 2176–2199. [Google Scholar] [CrossRef]
  27. Read, J.J.; Meinert, L.D. Gold-bearing quartz vein mineralization at the big hurrah mine, Seward Peninsula, Alaska. Econ. Geol. 1986, 81, 1760–1774. [Google Scholar] [CrossRef]
  28. Weir, R.H., Jr.; Kerrick, D.M. Mineralogic, fluid inclusion, and stable isotope studies of several gold mines in the mother lode, Tuolumne and Mariposa Counties, California. Econ. Geol. 1987, 82, 328–344. [Google Scholar] [CrossRef]
  29. Cunningham, C.G.; Ashley, R.P.; Chou, I.-M.; Zushu, H.; Chaoyuan, W.; Wenkang, L. Newly discovered sedimentary rock-hosted disseminated gold deposits in the People’s Republic of China. Econ. Geol. 1988, 83, 1462–1467. [Google Scholar] [CrossRef]
  30. So, C.-S.; Yun, S.-T.; Choi, S.-H.; Shelton, K.L. Geochemical studies of hydrothermal gold–silver deposits, Republic of Korea: Youngdong mining district. Min. Geol. 1989, 39, 9–19. [Google Scholar]
  31. Elder, D.; Cashman, S.M. Tectonic control and fluid evolution in the Quartz Hill, California, lode gold deposit. Econ. Geol. 1992, 87, 1795–1812. [Google Scholar] [CrossRef]
  32. Rushton, R.W.; Nesbitt, B.E.; Muehlenbachs, K.; Mortensen, J.K. A fluid inclusion and stable isotope study of Au quartz veins in the klondike district, Yukon Territory, Canada: A section through a mesothermal vein system. Econ. Geol. 1993, 88, 647–678. [Google Scholar] [CrossRef]
  33. So, C.-S.; Yun, S.-T.; Sheiton, K.L. Mesothermal gold vein mineralization of the Samdong mine, Youngdong mining district, Republic of Korea. A geochemical and fluid inclusion study. Miner. Depos. 1995, 30, 384–396. [Google Scholar] [CrossRef]
  34. Presnell, R.D.; Parry, W.T. Geology and geochemistry of the Barneys canyon gold deposit, Utah. Econ. Geol. 1996, 91, 273–288. [Google Scholar] [CrossRef]
  35. Goldfarb, R.J.; Miller, L.D.; Leach, D.L.; Snee, L.W. Gold deposits in metamorphyc rocks of Alaska. Econ. Geol. Monogr. 1997, 9, 151–190. [Google Scholar]
  36. Nie, F.J. Geology and origin of the dongping alkalic-type gold deposit, northern Hebei province, People’s Republic of China. Resour. Geol. 1998, 48, 139–158. [Google Scholar] [CrossRef]
  37. Yao, Y.; Morteani, G.; Trumbull, R.B. Fluid inclusion microthermometry and the P–T evolution of gold-bearing hydrothermal fluids in the Niuxinshan gold deposit, eastern Hebei province, NE China. Miner. Depos. 1999, 34, 348–365. [Google Scholar] [CrossRef]
  38. Mao, J.W.; Zhang, Z.H.; Yang, J.M.; Zhang, Z.C. The Hanshan gold deposit in the Caledonian North Qilian orogenic belt, NW China. Miner. Depos. 2000, 35, 63–71. [Google Scholar]
  39. Naumov, E.A.; Borovikov, A.A.; Borisenko, A.S.; Zadorozhnyy, M.V.; Murzin, V.V. Physicochemical conditions of formations of epithermal gold–mercury deposits. Russ. Geol. Geophys. 2002, 43, 1055–1064. [Google Scholar]
  40. Zhong, H.R.; Chao, S.W.; Wu, B.X.; Zhi, T.G.; Hofstra, A.H. Geology and geochemistry of carlin-type gold deposits in China. Miner. Depos. 2002, 37, 378–392. [Google Scholar] [CrossRef]
  41. Cheong, S. Fluid inclusion study of metamorphic gold–quartz veins in northwestern Nevada, U.S.A.: Characteristics of tectonically induced fluid. Geosci. J. 2002, 6, 103–115. [Google Scholar] [CrossRef]
  42. Mao, J.; Kerrich, R.; Li, H.; Li, Y. High 3He/4He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the tanlu deep fault zone. Geochem. J. 2003, 36, 197–208. [Google Scholar] [CrossRef]
  43. Cromie, P.W.; Zaw, K. Geological setting, nature of ore fluids and sulphur isotope geochemistry of the Fu Ning Carlin-type gold deposits, Yunnan Province, China. Geofluids 2003. 3, 133–143. [CrossRef]
  44. Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
  45. Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K. Fluid inclusion and noble gas studies of the dongping gold deposit, Hebei Province, China: A mantle connection for mineralization? Econ. Geol. 2003, 98, 517–534. [Google Scholar] [CrossRef]
  46. Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, C.; McClelland, W. The late cretaceous donlin creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation. Econ. Geol. 2004, 99, 643–671. [Google Scholar] [CrossRef]
  47. Bortnikov, N.S.; Bryzgalov, I.A.; Krivitskaya, N.N.; Prokofiev, V.Y.; Vikentieva, O.V. The Maiskoe multimegastage disseminated gold–sulfide deposit (Chukotka, Russia): Mineralogy, fluid inclusions, stable isotopes (O and S), history, and conditions of formation. Geol. Ore Depos. 2004, 46, 409–440. [Google Scholar]
  48. Li, Y.G.; Zhai, M.G.; Miao, L.C.; Xue, L.W.; Zhu, J.W.; Guan, H. Ore-forming fluids of the anjiayingzi gold deposit in Chifeng region, Inner Mongolia. Acta Petrol. Sin. 2004, 20, 961–968. [Google Scholar]
  49. Zhang, X.H.; Liu, Q.; Ma, Y.J.; Wang, H. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton. Ore Geol. Rev. 2005, 26, 325–348. [Google Scholar] [CrossRef]
  50. Zeng, Q.; Liu, J.; Liu, H.; Shen, P.; Zhang, L. The Ore-forming Fluid of the Gold Deposits of Muru Gold Belt in Eastern Shandong, China—A case study of denggezhuang gold deposit. Resour. Geol. 2006, 56, 375–384. [Google Scholar] [CrossRef]
  51. Yoo, B.C.; Lee, H.K.; White, N.C. Gold-bearing mesothermal veins from the gubong mine, cheongyang gold district, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol. 2006, 101, 883–901. [Google Scholar] [CrossRef]
  52. Hu, F.-F.; Fan, H.-R.; Zhai, M.-G.; Jin, C.-W. Fluid evolution in the rushan lode gold deposit of Jiaodong Peninsula, eastern China. J. Geochem. Explor. 2006, 89, 161–164. [Google Scholar] [CrossRef]
  53. Li, X.F.; Mao, J.W.; Wang, C.; Watanabe, Y. The Daduhe gold field at the eastern margin of the Tibetan Plateau: He, Ar, S, O, and hisotopic data and their metallogenic implications. Ore Geol. Rev. 2007, 30, 244–256. [Google Scholar] [CrossRef]
  54. Bortnikov, N.S.; Gamyanin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Alpatov, V.A.; Bakharev, A.G. Fluid composition and origin in the hydrothermal system of the nezhdaninsky gold deposit, Sakha (Yakutia), Russia. Geol. Ore Depos. 2007, 49, 87–128. [Google Scholar] [CrossRef]
  55. Zhang, Z.Q.; Yong, L.; Chen, Y.J. Fluid inclusion study of the Linglong gold deposit, Shandong province, China. Acta Petrol. Sin. 2007, 23, 2207–2216. [Google Scholar]
  56. Obolensky, A.A.; Gushchina, L.V.; Borisenko, A.S.; Borovikov, A.A.; Pavlova, G.G. Antimony in hydrothermal processes: Solubility, conditions of transfer, and metal-bearing capacity of solutions. Russ. Geol. Geophys. 2007, 48, 992–1001. [Google Scholar] [CrossRef]
  57. Gamyanin, G.N.; Prokofiev, V.Y.; Goryachev, N.A.; Bortnikov, N.S. Fluid inclusions in quartz of sin-granitic precious metals deposit of north-earth of Russia. In Part of Mineralogy in Knowledge of Ore-Forming Processes; Institut Geologii Rudnykh Mestorozhdeniy, Petrografii, Mineralogii I Geokhimii Ran (IGEM RAS): Moscow, Russia, 2007; pp. 92–97. [Google Scholar]
  58. Aristov, V.V.; Konstantiov, M.M.; Kryazhev, S.G. Genetic features of gold and silver deposits from the Western Verkhoyansk area: Fluid inclusion and isotope data. Geochem. Intern. 2008, 46, 313–317. [Google Scholar] [CrossRef]
  59. Goryachev, N.A.; Vikent’eva, O.V.; Bortnikov, N.S.; Prokofiev, V.Y.; Alpatov, V.A.; Golub, V.V. The world-class natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore. Geol. Ore Depos. 2008, 50, 362–390. [Google Scholar] [CrossRef]
  60. Volkov, A.V.; Sidorov, V.A.; Prokofiev, V.Y.; Sidorov, A.A. Polychronous formation of the rodionovskoe gold–quartz deposit, Russian northeast. Dokl. Earth Sci. 2009, 424, 19–23. [Google Scholar] [CrossRef]
  61. Su, W.; Heinrich, C.A.; Pettke, T.; Zhang, X.; Hu, R.; Xia, B. Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulphydation by deep crustal fluids. Econ. Geol. 2009, 104, 73–93. [Google Scholar] [CrossRef]
  62. Yoo, B.C.; Lee, H.K.; White, N.C. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—A mesothermal, vein-hosted gold–silver deposit. Miner. Depos. 2010, 45, 161–187. [Google Scholar] [CrossRef]
  63. Bortnikov, N.S.; Gamynin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Prokop’ev, A.V. The sarylakh and sentachan gold–antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold–quartz and epithermal stibnite ore. Geol. Ore Depos. 2010, 52, 339–372. [Google Scholar] [CrossRef]
  64. Huang, D.Z.; Wang, X.Y.; Yang, X.Y.; Li, G.M.; Huang, S.Q.; Liu, Z.; Peng, Z.H.; Qiu, R.L. Geochemistry of gold deposits in the zhangbaling tectonic belt, Anhui province, China. Int. Geol. Rev. 2011, 53, 612–634. [Google Scholar] [CrossRef]
  65. Volkov, A.V.; Savva, N.E.; Sidorov, A.A.; Prokofiev, V.Y.; Goryachev, N.A.; Voznesensky, S.D.; Al’shevsky, A.V.; Chernova, A.D. Shkol’noe gold deposit, the Russian northeast. Geol. Ore Depos. 2011, 53, 1–26. [Google Scholar] [CrossRef]
  66. Obolensky, A.A.; Gushchina, L.V.; Anisimova, G.S.; Serkebaeva, E.S.; Tomilenko, A.A.; Gibsher, N.A. Physicochemical modeling of mineral formation processes at the badran gold deposit (Yakutia). Russ. Geol. Geophys. 2011, 52, 290–1001. [Google Scholar] [CrossRef]
  67. Volkov, A.V.; Prokofiev, V.Y.; Alekseev, V.Y.; Baksheev, I.A.; Sidorov, A.A. Ore-forming fluids and conditions of formation of gold–sulfide–quartz mineralization in the shear zone: Pogromnoe deposit (Eastern Transbaikalian Region). Dokl. Earth Sci. 2011, 441, 1492–1497. [Google Scholar] [CrossRef]
  68. Zhou, Z.J.; Jiang, S.Y.; Qin, Y.; Zhao, H.X.; Hu, C.J. Fluid inclusion characteristics and ore genesis of the Wenyu gold deposit, Xiaoqinling gold belt. Acta Petrol. Sin. 2011, 27, 3787–3799. [Google Scholar]
  69. Gu, X.X.; Zhang, Y.M.; Li, B.H.; Dong, S.Y.; Xue, C.J.; Fu, S.H. Hydrocarbon- and ore-bearing basinal fluids: A possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China. Miner. Depos. 2012, 47, 663–682. [Google Scholar] [CrossRef]
  70. Li, J.-W.; Li, Z.-K.; Zhou, M.F.; Chen, L.; Bi, S.-J.; Deng, X.-D.; Qui, H.-N.; Cohen, B.; Selby, D.; Zhao, X.-F. The Early Cretaceous Yangzhaiyu Lode Gold Deposit, North China Craton: A Link Between Craton Reactivation and Gold Veining. Econ. Geol. 2012, 107, 43–79. [Google Scholar] [CrossRef]
  71. Tang, K.-F.; Li, J.W.; Selby, D.; Zhou, M.F.; Bi, S.J.; Deng, X.D. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong’ershan area, southern North China Craton. Miner. Depos. 2013, 48, 729–747. [Google Scholar] [CrossRef]
  72. Hu, F.F.; Fan, H.R.; Jiang, X.H.; Li, X.C.; Yang, K.F.; Mernagh, T. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids 2013, 13, 528–541. [Google Scholar] [CrossRef]
  73. Zhao, C.; Ni, P.; Wang, G.G.; Ding, J.Y.; Chen, H.; Zhao, K.D.; Cai, Y.T.; Xu, Y.F. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China. Geofluids 2013, 13, 506–527. [Google Scholar] [CrossRef]
  74. Khishgee, C.; Akasaka, M.; Ohira, H.; Sereenen, J. Gold Mineralization of the Gatsuurt Deposit in the North Khentei Gold Belt, Central Northern Mongolia. Resour. Geol. 2014, 64, 1–16. [Google Scholar] [CrossRef]
  75. Peng, Y.; Gu, X.; Zhang, Y.; Liu, L.; Wu, C.; Chen, S. Ore-forming process of the Huijiabao gold district, southwestern Guizhou Province, China: Evidence from fluid inclusions and stable isotopes. J. Asian Earth Sci. 2014, 93, 89–101. [Google Scholar] [CrossRef]
  76. Zhou, Z.-J.; Chen, Y.-J.; Jiang, S.-Y.; Zhao, H.-X.; Qin, Y.; Hu, C.-J. Geology, geochemistry and ore genesis of theWenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China craton. Ore Geol. Rev. 2014, 59, 1–20. [Google Scholar] [CrossRef]
  77. Wen, B.J.; Fan, H.R.; Hu, F.F.; Yang, K.F.; Liu, X.; Cai, Y.C.; Sun, Z.F.; Sun, Z.F. The genesis of pegmatite-type molybdenum mineralization in Sanshandao, and their implications for molybdenum deposit in Jiaodong, East China. Acta Petrol. Sin. 2015, 31, 1002–1014. [Google Scholar]
  78. Gamyanin, G.N.; Vikent’eva, O.V.; Prokofiev, V.Y.; Bortnikov, N.S. Arkachan: A new gold–bismuth–siderite–sulfide type of deposits in the west verkhoyansky tin district, Yakutia. Geol. Ore Depos. 2015, 57, 465–495. [Google Scholar] [CrossRef]
  79. Salvioli-Mariani, E.; Toscani, L.; Boschetti, T.; Bersani, D.; Mattioli, M. Gold mineralisations in the Canan area, lepaguare district, east-central honduras: Fluid inclusions and geochemical constraints on gold deposition. J. Geochem. Explor. 2015, 158, 243–256. [Google Scholar] [CrossRef]
  80. Liu, J.; Dai, H.; Zhai, D.; Wang, J.; Wang, Y.; Yang, L.; Mao, G.; Liu, X.; Liao, Y.; Yu, C.; et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China. Ore Geol. Rev. 2015, 64, 273–298. [Google Scholar] [CrossRef]
  81. Zhou, Z.; Chen, Y.-J.; Jiang, S.-Y.; Hu, C.-J.; Qin, Y.; Zhao, H.-X. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit, Xiaoqinling gold field, Qinling Orogen, China. Ore Geol. Rev. 2015, 66, 47–64. [Google Scholar] [CrossRef]
  82. Wen, B.-J.; Fan, H.-R.; Santosh, M.; Hu, F.-F.; Pirajno, F.; Yang, K.-F. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geol. Rev. 2015, 65, 643–658. [Google Scholar] [CrossRef]
  83. Li, L.; Sun, J.-G.; Men, L.-J.; Chai, P. Origin and evolution of the ore-forming fluids of the Erdaogou and Xiaobeigou gold deposits, Jiapigou gold province, NE China. J. Asian Earth Sci. 2016, 129, 170–190. [Google Scholar] [CrossRef]
  84. Wen, B.-J.; Fan, H.-R.; Hu, F.-F.; Liu, X.; Yang, K.-F.; Sun, Z.-F. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
  85. Fu, L.; Wei, J.; Chen, H.; Bagas, L.; Tan, J.; Li, H.; Zhang, D.; Tian, N. The relationship between gold mineralization, exhumation of metamorphic core complex and magma cooling: Formation of the Anjiayingzi Au deposit, northern North China Craton. Ore Geol. Rev. 2016, 73, 222–240. [Google Scholar] [CrossRef]
  86. Chai, P.; Sun, J.-G.; Hou, Z.-Q.; Xing, S.-W.; Wang, Z.-Y. Geological, fluid inclusion, H–O–S–Pb isotope, and Ar–Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, northeast China. Ore Geol. Rev. 2016, 72, 1053–1071. [Google Scholar] [CrossRef]
  87. Yang, L.-Q.; Deng, J.; Guo, L.-N.; Wang, Z.-L.; Li, X.-Z.; Li, J.-L. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 585–602. [Google Scholar] [CrossRef]
  88. Song, Y.; Jiang, S.-H.; Bagas, L.; Li, C.; Hu, J.-Z.; Zhang, Q.; Zhou, W.; Ding, H.-Y. The geology and geochemistry of Jinchangyu gold deposit, North China Craton: Implications for metallogenesis and geodynamic setting. Ore Geol. Rev. 2016, 73, 313–329. [Google Scholar] [CrossRef]
  89. Zheng, Y.; Zhou, Y.; Wang, Y.; Shen, W.; Yang, Z.; Li, X.; Xiao, F. A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay–Hangzhou Bay metallogenic belt, South China. Ore Geol. Rev. 2016, 73, 346–353. [Google Scholar] [CrossRef]
  90. Ma, Y.; Xiong, S.-F.; Li, H.-L.; Jiang, S.-Y. Origin and evolution of the ore-forming fluids in the Liyuan gold deposit, central North China Craton: Constraints from fluid inclusions and H–O–C isotopic compositions. Geofluids 2017, 6, 1–21. [Google Scholar] [CrossRef]
  91. Xu, D.; Wang, Z.; Wu, C.; Zhou, Y.; Shan, Q.; Hou, M.; Fu, Y.; Zhang, X. Mesozoic gold mineralization in Hainan Province of South China: Genetic types, geological characteristics and geodynamic settings. J. Asian Earth Sci. 2017, 137, 80–108. [Google Scholar] [CrossRef]
  92. Gao, S.; Xu, H.; Li, S.; Santosh, M.; Zhang, D.; Yang, L.; Quan, S. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China. Ore Geol. Rev. 2017, 80, 166–184. [Google Scholar] [CrossRef]
  93. Liu, J.; Wang, J.; Liu, Y.; Tian, J.; Li, X.; Zhang, H. Ore genesis of the Xiadian gold deposit, Jiaodong Peninsula, East China: Information from fluid inclusions and mineralization. Geol. J. 2017, 53, 1–19. [Google Scholar] [CrossRef]
  94. Guo, L.-N.; Goldfarb, R.J.; Wang, Z.-L.; Li, R.-H.; Chen, B.-H.; Li, J.-L. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 2017, 88, 511–533. [Google Scholar] [CrossRef]
  95. Xu, D.; Deng, T.; Chi, G.; Wang, Z.; Zou, F.; Zhang, J.; Zou, S. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting. Ore Geol. Rev. 2017, 88, 565–618. [Google Scholar] [CrossRef]
  96. Seccombe, P.K.; Hicks, M.N. The Hill End goldfield, NSW, Australia—Early metamorphic deposition of auriferous quartz veins. Mineral. Petrol. 1989, 40, 257–273. [Google Scholar] [CrossRef]
  97. Bril, H.; Beaufort, D. Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralizations, Haut Allier, Massif Central, France. Econ. Geol. 1989, 84, 2237–2251. [Google Scholar] [CrossRef]
  98. Spiridonov, E.M.; Prokofiev, V.Y. Geochemical characteristics and conditions of formation of the plutonogenetic gold–telluride deposits in the caledonides of Nortern Kazakhstan. Int. Geol. Rev. 1990, 32, 188–202. [Google Scholar] [CrossRef]
  99. Peters, S.G.; Golding, S.D.; Dowling, K. Melange- and sediment-hosted gold-bearing quartz veins, Hodgkinson gold field, Queensland, Australia. Econ. Geol. 1990, 85, 312–327. [Google Scholar] [CrossRef]
  100. Schreiber, D.W.; Fontbote, L.; Lochmann, D. Geologic setting, paragenesis, and physicochemistry of gold quartz veins hosted by plutonic rocks in the Pataz region. Econ. Geol. 1990, 85, 1328–1347. [Google Scholar] [CrossRef]
  101. Prokofiev, V.Y.; Sanina, N.B. Geochemistry of the mineralizing fluids at the Sarala gold deposit, Kuznetsk Alatau. Geochem. Intern. 1992, 29, 42–49. [Google Scholar]
  102. Gao, Z.L.; Kwak, T.A.P.; Changkakoti, A.; Hussein, E.; Gray, J. Supergene ore and hypogene nonore mineralization at the Nagambie sediment-hosted gold deposit, Victoria, Australia. Econ. Geol. 1995, 90, 1747–1763. [Google Scholar] [CrossRef]
  103. Grebenschikova, V.I.; Prokofiev, V.Y.; Troshin, Y.P. New data of formation conditions of gold vein of Kommunar gold deposit (Kuznetsk Alatau). Dokl. Earth Sci. 1995, 340, 239–242. [Google Scholar]
  104. Bortnikov, N.S.; Prokofiev, V.Y.; Razdolina, N.V. Origin of the charmitan gold–quartz deposit (Uzbekistan). Geol. Ore Depos. 1996, 38, 208–226. [Google Scholar]
  105. Jia, Y.; Li, X.; Kerrich, R. A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the bendigo gold field, central Victoria, Australia. Econ. Geol. 2000, 95, 467–493. [Google Scholar] [CrossRef]
  106. Laverov, N.P.; Prokofiev, V.Y.; Distler, V.V.; Spiridonov, A.M.; Yudovskaya, M.A.; Grebenschikova, V.I.; Matel, N.L. New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold-platinum deposit. Dokl. Earth Sci. 2000, 371, 357–361. [Google Scholar]
  107. Baksheev, I.A.; Prokofiev, V.Y.; Ustinov, V.I. Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, central urals: Evidence from fluid inclusions and stable isotopes. Geochem. Intern. 2001, 39, S129. [Google Scholar]
  108. Mernagh, T.P. A fluid inclusion study of the fosterville mine: A turbidite-hosted gold field in the western Lachlan fold belt, Victoria, Australia. Chem. Geol. 2001, 173, 91–106. [Google Scholar] [CrossRef]
  109. Bellot, J.-P.; Lerouge, C.; Bailly, L.; Bouchot, V. The biards Sb–Au-bearing shear zone (Massif Central, France): An indicator of crustal-scale transcurrent tectonics guiding late Variscan collapse. Econ. Geol. 2003, 98, 1427–1447. [Google Scholar] [CrossRef]
  110. Safonov, Y.G.; Volkov, A.V.; Volfson, A.A.; Genkin, A.D.; Krylova, T.L.; Chugayev, A.V. The maisk quartz gold deposit (Northern Karelia): Geological, mineralogical, and geochemical studies and some genetic problems. Geol. Ore Depos. 2003, 45, 375–394. [Google Scholar]
  111. Giles, A.D.; Marshall, B. Genetic significance of fluid inclusions in the CSA Cu–Pb–Zn deposit, Cobar, Australia. Ore Geol. Rev. 2004, 24, 241–266. [Google Scholar] [CrossRef]
  112. Vallance, J.; Boiron, M.-L.; Cathelineau, M.; Fourcade, S.; Varlet, M.; Marignac, C. The granite hosted gold deposit of Moulin de Cheni (Saint-Yrieix district, Massif Central, France): Petrographic, structural, fluid inclusion and oxygen isotope constraints. Miner. Depos. 2004, 39, 265–281. [Google Scholar]
  113. Miao, L.C.; Qiu, Y.M.; Fan, W.M.; Zhang, F.Q.; Zhai, M.G. Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China. Ore Geol. Rev. 2004, 26, 137–165. [Google Scholar] [CrossRef]
  114. Yang, F.Q.; Mao, J.W.; Wang, Y.T.; Bierlein, F.P. Geology and geochemistry of the Bulong quartz-barite vein-type gold deposit in the Xinjiang Uygur Autonomous Region, China. Ore Geol. Rev. 2005, 26, 52–76. [Google Scholar]
  115. Kreuzer, O.P. Intrusion-hosted mineralization in the Charters Towers goldfield, North Queensland: New isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Econ. Geol. 2005, 100, 1583–1603. [Google Scholar] [CrossRef]
  116. Xu, J.; Ding, R.; Xie, Y.; Zhong, C.; Shan, L. The source of hydrothermal fluids for the Sarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidence from fluid inclusions and geochemistry. J. Asian Earth Sci. 2008, 32, 247–258. [Google Scholar] [CrossRef]
  117. Yang, F.Q.; Mao, J.W.; Bierlein, F.P.; Pirajno, F.; Zhao, C.S.; Ye, H.S.; Liu, F. A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China. Ore Geol. Rev. 2009, 35, 217–234. [Google Scholar] [CrossRef]
  118. Zhang, D.Q.; She, H.Q.; Feng, C.Y.; Li, D.X.; Li, J.W. Geology, age, and fluid inclusions of the Tanjianshan gold deposit, western China: Two oregenies and two gold mineralizing events. Ore Geol. Rev. 2009, 36, 250–263. [Google Scholar]
  119. Kontak, D.J.; Kyser, K. A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: Evidence for multiple fluid. Miner. Depos. 2011, 46, 337–363. [Google Scholar] [CrossRef]
  120. Fu, B.; Kendrick, M.A.; Fairmaid, A.M.; Phillips, D.; Wilson, C.J.L.; Mernagh, T.P. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib. Miner. Pet. 2012, 163, 427–447. [Google Scholar] [CrossRef]
  121. Ryabukha, M.A.; Gibsher, N.A.; Tomilenko, A.A.; Bulbak, T.A.; Khomenko, M.O.; Sazonov, A.M. P–T–X parameters of metamorphogene and hydrothermal fluids, isotopy and age of the Bogunai gold deposit, southern Yenisei Ridge (Russia). Russ. Geol. Geophys. 2015, 56, 903–918. [Google Scholar] [CrossRef]
  122. Lai, J.; Ju, P.; Tao, J.; Yang, B.; Wang, X. Characteristics of fluid inclusions and metallogenesis of annage gold deposit in Qinghai Province, China. Open J. Geol. 2015, 5, 780–794. [Google Scholar] [CrossRef]
  123. Liang, Y.; Wang, G.; Liu, S.; Sun, Y.; Huang, Y.; Hoshino, K. A Study on the mineralization of the Woxi Au–Sb–W deposit, Western Hunan, China. Resour. Geol. 2015, 65, 27–38. [Google Scholar] [CrossRef]
  124. Xu, Y.-F.; Pei, N.P.; Wang, G.-G.; Pan, J.-Y.; Guan, S.-J.; Chen, H.; Ding, J.-Y.; Li, L. Geology, fluid inclusion and stable isotope study of the Huangshan orogenic gold deposit: Implications for future exploration along the Jiangshan-Shaoxing fault zone, South China. J. Geochem. Explor. 2016, 171, 37–54. [Google Scholar] [CrossRef]
  125. Chai, P.; Sun, J.-G.; Xing, S.-W.; Li, B.; Lu, C. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China. Ore Geol. Rev. 2016, 72, 1022–1036. [Google Scholar] [CrossRef]
  126. Fuertes-Fuente, M.; Cepedal, A.; Lima, A.; Dória, A.; dos Ribeiro, M.A.; Guedes, A. The Au-bearing vein system of the Limarinho deposit (northern Portugal): Genetic constraints from Bi-chalcogenides and Bi–Pb–Ag sulfosalts, fluid inclusions and stable isotopes. Ore Geol. Rev. 2016, 72, 213–231. [Google Scholar] [CrossRef]
  127. Khomenko, M.O.; Gibsher, N.A.; Tomilenko, A.A.; Bul’bak, T.A.; Ryabukha, M.A.; Semenova, D.V. Physicochemical parameters and age of the Vasil’kovskoe gold deposit, Northern Kazakhastan. Russ. Geol. Geophys. 2016, 57, 1728–1749. [Google Scholar] [CrossRef]
  128. Prokofiev, V.Y.; Safonov, Y.G.; Lüders, V.; Borovikov, A.A.; Kotov, A.A.; Zlobina, T.M.; Murashov, K.Y.; Yudovskaya, M.A.; Selektor, S.L. The sources of mineralizing fluids of orogenic gold deposits of the Baikal-Patom and Muya areas, Siberia: Constraints from the C and N stable isotope compositions of fluid inclusions. Ore Geol. Rev. 2019, 111, 102988. [Google Scholar] [CrossRef]
  129. Prokofiev, V.Y.; Afanas’yeva, Z.B.; Ivanova, G.F.; Boiron, M.C.; Marignac, C. Fluid inclusions in mineral at the Olympiada Au–(Sb–W) deposit, Yenisey ridge. Geochem. Intern. 1995, 32, 104–121. [Google Scholar]
  130. Coutinho, M.G.N.; Alderton, D.H.M. Character and genesis of Proterozoic shear zone-hosted gold deposits in Borborema Province, northeast Brazil. Transact. Inst. Min. Metall. Sect. B 1998, 107, B109–B119. [Google Scholar]
  131. Genkin, A.D.; Wagner, F.E.; Krylova, T.L.; Tsepin, A.I. Gold-bearing arsenopyrite and its formation condition at the Olympiada and Veduga gold deposits (Yenisei Range, Siberia). Geol. Ore Depos. 2002, 44, 52–68. [Google Scholar]
  132. Alm, E.; Broman, C.; Billstrom, K.; Sundblad, K.; Torssander, P. Fluid characteristics and genesis of early Neoproterozoic orogenic gold-quartz veins in the Harnas area, southwestern Sweden. Econ. Geol. 2003, 98, 1311–1328. [Google Scholar] [CrossRef]
  133. Ferrari, M.A.D.; Choudhuri, A. Structural controls on gold mineralisation and the nature of related of the Paiol gold deposit, Almas Greenstone Belt, Brazil. Ore Geol. Rev. 2004, 24, 173–197. [Google Scholar] [CrossRef]
  134. Fraser, G.L.; Skirrow, R.G.; Schmidt-Mumm, A.; Holm, O. Mesoproterozoic gold in the central Gawler craton, South Australia: Geology, alteration, fluids, and timing. Econ. Geol. 2007, 102, 1511–1539. [Google Scholar] [CrossRef]
  135. Budd, A.R.; Skirrow, R.G. The nature and origin of gold deposits of the Tarcoola Goldfield and implications for the central Gawler gold province, South Australia. Econ. Geol. 2007, 102, 1541–1563. [Google Scholar] [CrossRef]
  136. Schindler, C.; Hagemann, S.G.; Banks, D.; Mernagh, T.; Harris, A.C. magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related telfer gold–copper deposit, paterson orogen, Western Australia: Pressure–temperature–composition constraints on the ore-forming fluids. Econ. Geol. 2016, 111, 1099–1126. [Google Scholar] [CrossRef]
  137. Fedorowich, J.; Stauffer, M.; Kerrich, R. Structural setting and fluid characteristics of the Proterozoic tartan lake gold deposit, trans-hudson orogen, northern Manitoba. Econ. Geol. 1991, 86, 1434–1467. [Google Scholar] [CrossRef]
  138. Ibrahim, M.S.; Kyser, T.K. Fluid inclusion and isotope systematics of the high-temperature Proterozoic Star Lake lode gold deposit, Northern Saskatchewan, Canada. Econ. Geol. 1991, 86, 1468–1490. [Google Scholar] [CrossRef]
  139. Ansdell, K.M.; Kyser, T.K. Mesothermal gold mineralization in a Proterozoic greenstone belt: Western Flin Flon Domain, Saskatchewan, Canada. Econ. Geol. 1992, 87, 1496–1524. [Google Scholar] [CrossRef]
  140. Poutiainen, M. Fluid inclusion geochemistry of the early Proterozoic Piril i gold deposit in Rantasalmi, southeastern Finland. Miner. Depos. 1993, 28, 129–135. [Google Scholar] [CrossRef]
  141. Field, M.P.; Kerrich, R.; Kyser, T.K. Characteristics of barren quartz veins in the Proterozoic La Ronge Domain, Saskatchewan, Canada: A comparison with auriferous counterparts. Econ. Geol. 1998, 93, 602–616. [Google Scholar] [CrossRef]
  142. Klein, E.L.; Fuzikawa, K.; Koppe, J.C.; Dantas, M.S.S. Fluid associated with the Caxias mesothermal gold mineralization, Sao Luis craton, northern Brazil: A fluid inclusion study. Rev. Bras. Geocienc. 2000, 30, 322–326. [Google Scholar] [CrossRef]
  143. Xavier, R.P.; Coelho, C.E.S. Fluid regimes related to the formation of lode–gold deposits in Rio Itapicuru Greenstone Belt, Bahia: A fluid inclusion review. Rev. Bras. Geocienc. 2000, 30, 311–314. [Google Scholar] [CrossRef]
  144. Klein, E.L.; dos Santos, R.A.; Fuzikawa, K.; Angelica, R.S. Hydrothermal fluid evolution and structural control of the Guarim gold mineralisation, Tapajos Province, Amazonian Craton, Brazil. Miner. Depos. 2001, 36, 149–164. [Google Scholar] [CrossRef]
  145. Hein, K.A.A.; Zaw, K.; Mernagh, T.P. Linking mineral and fluid inclusion paragenetic studies: The Batman deposit, Mt. Todd (Yimuyn Manjerr) goldfield, Australia. Ore Geol. Rev. 2006, 28, 180–200. [Google Scholar] [CrossRef]
  146. Klein, E.L.; Harris, C.; Renac, C.; Giret, A.; Moura, C.A.; Fuzikawa, K. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, gurupi belt, northern Brazil. Miner. Depos. 2006, 41, 160–178. [Google Scholar] [CrossRef]
  147. Mernagh, T.P.; Wygralak, A.S. Gold ore-forming of the Tanami region, Northern Australia. Miner. Depos. 2007, 42, 145–173. [Google Scholar] [CrossRef]
  148. Coullbaly, Y.; Boiron, M.C.; Cathelineau, M.; Kouamelan, A.N. Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaoure, Ivory Coast). J. Afr. Earth Sci. 2008, 50, 234–254. [Google Scholar] [CrossRef]
  149. Klein, E.L.; Ribeiro, J.W.A.; Harris, C.; Moura, C.A.V.; Giret, A. Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil. Econ. Geol. 2008, 103, 957–980. [Google Scholar] [CrossRef]
  150. Billstrom, K.; Broman, C.; Jonsson, E.; Recio, C.; Boyce, A.J.; Torssander, P. Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Bjorkdal Au deposit, northern Sweden. Intern. J. Earth Sci. 2009, 98, 1027–1052. [Google Scholar] [CrossRef]
  151. Klein, E.L.; Fuzikawa, K. Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: Implications for orogenic gold mineralization. Ore Geol. Rev. 2010, 37, 31–40. [Google Scholar] [CrossRef]
  152. Hammond, N.Q.; Robb, L.; Foya, S.; Ishiyama, D. Mineralogical, fluid inclusion and stable isotope characteristics of Birimian orogenic gold mineralization at the Morila mine, Mali, West Africa. Ore Geol. Rev. 2011, 39, 218–229. [Google Scholar] [CrossRef]
  153. Lawrence, D.M.; Treloqr, P.J.; Rankin, A.H.; Boyce, A.; Harbidge, P. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits. Econ. Geol. 2013, 108, 229–257. [Google Scholar] [CrossRef]
  154. de Freitas, S.C.F.; Klein, E.L. The mineralizing fluid in the Piaba gold deposit, São Luís cratonic fragment (NW-Maranhão, Brazil) based on fluid inclusion studies in quartz veins. Braz. J. Geol. 2013, 43, 70–84. [Google Scholar] [CrossRef]
  155. Tassinari, C.C.G.; Mateus, A.M.; Velásquez, M.E.; Munhá, J.M.U.; Lobato, L.M.; Bello, R.M.; Chiquini, A.P.; Campos, W.F. Geochronology and thermochronology of gold mineralization in the Turmalina deposit, NE of the Quadrilátero Ferrífero Region, Brazil. Ore Geol. Rev. 2015, 67, 368–381. [Google Scholar] [CrossRef]
  156. Klein, E.L.; Lucas, F.R.A.; Queiroz, J.D.S.; Freitas, S.C.F.; Renac, C.; Galarza, M.A.; Jourdan, F.; Armstrong, R. Metallogenesis of the Paleoproterozoic Piaba orogenic gold deposit, São Luís cratonic fragment, Brazil. Ore Geol. Rev. 2015, 65, 1–25. [Google Scholar] [CrossRef]
  157. Amponsah, P.O.; Salvi, S.; Beziat, D.; Siebenaller, L.; Baratoux, L.; Jessell, M.W. Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana. J. Afr. Earth Sci. 2015, 112, 505–523. [Google Scholar] [CrossRef]
  158. Morales, M.J.; Figueiredo e Silva, R.C.; Lobato, L.M.; Gomes, S.D.; Gomes, C.C.C.O.; Banks, D.A. Metal source and fluid–rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol. Rev. 2016, 72, 510–531. [Google Scholar] [CrossRef]
  159. Guha, J.; Leroy, J.; Guha, D. Significance of fluid phases associated with shear zone Cu–Au mineralisation in the Dore lake complex, Chibougamau, Quebec. Bull. Mineral. 1979, 102, 569–576. [Google Scholar] [CrossRef]
  160. Smith, T.J.; Cloke, P.L.; Kesler, S.E. Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario, Canada. Econ. Geol. 1984, 79, 1265–1285. [Google Scholar] [CrossRef]
  161. Santosh, M. Ore fluids in the auriferous champion reef of kolar, South India. Econ. Geol. 1986, 81, 1546–1552. [Google Scholar] [CrossRef]
  162. Studemeister, P.A.; Kilias, S. Alteration pattern and fluid inclusions of gold-bearing quartz veins in Archean trondjemite near Wawa, Ontario, Canada. Econ. Geol. 1987, 82, 429–439. [Google Scholar] [CrossRef]
  163. Burrows, D.R.; Spooner, E.T.C. Generation of a magmatic H2O–CO2 fluid enriched in Mo, Au, and W within an Archean sodic granodiorute stock, Mink Lake, northwestern Ontario. Econ. Geol. 1987, 82, 1931–1957. [Google Scholar] [CrossRef]
  164. Robert, F.; Kelly, W.C. Ore-forming fluids in archean gold-bearing quartz veins at the sigma mine, abitibi greenstone belt, Quebec, Canada. Econ. Geol. 1987, 82, 1464–1482. [Google Scholar] [CrossRef]
  165. Naumov, V.B.; Safonov, Y.G.; Mironova, O.F. Some regularities in spatial variations of the parameters of fluid of the Kolar gold deposit, India. Geol. Rudn. Mestorozhd 1988, 6, 105–109. [Google Scholar]
  166. Walsh, J.F.; Kesler, S.E.; Duff, D.; Cloke, P.L. Fluid inclusion geochemistry of high-grade, vein-hosted gold ore at the Pamour mine, Porcupine camp, Ontario. Econ. Geol. 1988, 83, 1347–1367. [Google Scholar] [CrossRef]
  167. De Ronde, C.E.J.; Spooner, E.T.C.; De Wit, M.J.; Bray, C.J. Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa: Field and petrographic characteristics, fluid properties and light stable isotope geochemistry. Econ. Geol. 1992, 87, 366–402. [Google Scholar] [CrossRef]
  168. Samson, I.M.; Bas, B.; Holm, P.E. Hydrothermal evolution of auriferous shear zones, Wawa, Ontario. Econ. Geol. 1997, 92, 325–342. [Google Scholar] [CrossRef]
  169. Boullier, A.-M.; Firdaous, K.; Robert, F. On the significance of aqueous fluid inclusions in gold-bearing quartz vein deposits from the southeastern Abitibi subprovince (Quebec, Canada). Econ. Geol. 1998, 93, 216–233. [Google Scholar] [CrossRef]
  170. Mishra, B.; Panigrahi, M.K. Fluid evolution in the Kolar Gold Field: Evidence from fluid inclusion studies. Miner. Depos. 1999, 34, 173–181. [Google Scholar] [CrossRef]
  171. Hagemann, S.G.; Luders, V. Antimony–gold mineralization at the epizonal Wiluna lode-gold deposits, Western Australia: Infrared microthermometric constraints on the P–T–X conditions of stibnite mineralization. In Terra Nostra ECROFI XV Abstract and Program; GeoForschungsZentrum (GFZ): Potsdam, Germany, 1999; pp. 140–142. [Google Scholar]
  172. Dugdale, A.L.; Hagemann, S.G. The Bronzewing lode–gold deposit, Western Australia: P–T–X evidence for fluid immiscibility caused by cyclic decompression in gold-bearing quartz-veins. Chem. Geol. 2001, 173, 59–90. [Google Scholar] [CrossRef]
  173. Olivo, G.R.; Williams-Jones, A.E. Genesis of the auriferous C quartz-tourmaline vein of the Siscoe mine, Val d’Or district, Abitibi subprovince, Canada: Structural, mineralogical and fluid inclusion constraints. Econ. Geol. 2002, 97, 929–947. [Google Scholar] [CrossRef]
  174. Polito, P.A.; Bone, Y.; Clarke, J.D.A.; Mernagh, T.P. Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: A process of fluid-wall-rock interaction? Aust. J. Earth Sci. 2001, 48, 833–855. [Google Scholar] [CrossRef]
  175. Blewett, R.S.; Huston, D.L.; Mernagh, T.P.; Kamprad, J. The diverse structure of Archean lode gold deposits of the southwest Mosquito Creek belt, East Pilbara Craton, Western Australia. Econ. Geol. 2002, 97, 787–800. [Google Scholar] [CrossRef]
  176. Neumayr, P.; Hagemann, S.G. Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: Relationship to auriferous fluids in adjacent second- and thir-order shear zones. Econ. Geol. 2002, 97, 1203–1225. [Google Scholar] [CrossRef]
  177. Pal, N.; Mishra, B. Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, Eastern Dharwar Craton, India. Miner. Depos. 2002, 37, 722–736. [Google Scholar] [CrossRef]
  178. Uemoto, T.; Ridley, J.; Mikucki, E.; Groves, D.I.; Kusakabe, M. Fluid chemical evolution as a factor in controlling the distribution of gold at the Archean Golden Crown lode gold deposit, Murchison province, Western Australia. Econ. Geol. 2002, 97, 1227–1248. [Google Scholar] [CrossRef]
  179. Hagemann, S.G.; Luders, V. P–T–X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode–gold deposits, Western Australia: Conventional and infrared microthermometric constraints. Miner. Depos. 2003, 8, 936–952. [Google Scholar] [CrossRef]
  180. Poutiainen, M.; Partamies, S. Fluid evolution of the late Archaean Ramepuro gold deposit in the Ilomantsi greenstone belt in eastern Finland. Miner. Depos. 2003, 38, 196–207. [Google Scholar] [CrossRef]
  181. Zhou, T.; Phillips, G.N.; Denn, S.; Burke, S. Woodcutters goldfield: Gold in an archaean granite, Kalgoorlie, Western Australia. Aust. J. Earth Sci. 2003, 50, 553–569. [Google Scholar] [CrossRef]
  182. Baker, D.E.L.; Seccombe, P.K. Physical conditions of gold deposition at the McPhees deposit, Pilbara Craton, western Australia: Fluid inclusion and stable isotope constraints. Can. Miner. 2004, 42, 1405–1441. [Google Scholar] [CrossRef]
  183. Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite–komatiite contact at Tarmoola, Western Australia. Econ. Geol. 2004, 99, 423–451. [Google Scholar] [CrossRef]
  184. Mernagh, T.P.; Heinrich, C.A.; Mikucki, E.J. Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia. Can. Miner. 2004, 42, 1383–1403. [Google Scholar] [CrossRef]
  185. Shelton, K.L.; McMenamy, T.A.; van Hees, E.H.P.; Falck, H. Deciphering the complex fluid history of greenstone-hosted gold deposit: Fluid inclusion and stable isotope studies of the Giant mine, Yellowknife, Northwest Territories, Canada. Econ. Geol. 2004, 99, 1643–1663. [Google Scholar] [CrossRef]
  186. Mishra, B.; Pal, N.; Sarbadhikari, A.B. Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India. Ore Geol. Rev. 2005, 26, 1–16. [Google Scholar] [CrossRef]
  187. Buchholz, P.; Oberthur, T.; Luders, V.; Wilkinson, J. Multistage Au–As–Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: A combined geochemical, mineralogical, stable isotope, and fluid inclusion study. Econ. Geol. 2007, 102, 347–378. [Google Scholar] [CrossRef]
  188. Mishra, B.; Pal, N. Metamorphism, fluid flux, and fluid evolution relative to gold mineralization in the Hutti-Maski greenstone belt, eastern Dharwar craton, India. Econ. Geol. 2008, 103, 801–827. [Google Scholar] [CrossRef]
  189. Baker, T.; Bertelli, M.; Blenkinsop, T.; Cleverley, J.S.; McLellan, J.; Nugus, M.; Gillen, D. P–T–X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids. Econ. Geol. 2010, 105, 873–894. [Google Scholar] [CrossRef]
  190. Mernagh, T.P.; Bastrakov, E.N. An evaluation of hydrogen sulfide in orogenic gold fluids and the uncertainties associated with vapor-rich inclusions. Geofluids 2013, 13, 494–505. [Google Scholar] [CrossRef]
  191. Chinnasamy, S.S.; Uken, R.; Reinhardt, J.; Selby, D.; Johnson, S. Pressure, temperature, and timing of mineralization of the sedimentary rock-hosted orogenic gold deposit at Klipwal, southeastern Kaapvaal Craton, South Africa. Miner. Depos. 2015, 50, 739–766. [Google Scholar] [CrossRef]
  192. Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Gold 2000 SEG Rev. 2000, 13, 141–162. [Google Scholar]
  193. Bodnar, R.J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-Maclnnes, P. Fluid inclusions in hydrothermal ore deposits. Reference module in earth systems and environmental sciences. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–142. [Google Scholar]
  194. Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2019, 1–18. [Google Scholar] [CrossRef]
  195. Kesler, S.E.; Wilkinson, B.H. The role of exhumation in the temporal distribution of ore deposits. Econ. Geol. 2006, 101, 919–922. [Google Scholar] [CrossRef]
  196. Yardley, B.W.D.; Graham, J.T. The origins of salinity in metamorphic fluids. Geofluids 2002, 2, 249–256. [Google Scholar] [CrossRef]
Figure 1. Temperature–salt concentration diagrams for mineralizing fluids at gold deposits of different age. Here and in Figure 2, Figure 3, Figure 4 and Figure 5, n is the number of measurements. Here and on Figure 2 trendlines are shown as dashed lines. The initial data on the fluid parameters are provided as Supplementary Materials.
Figure 1. Temperature–salt concentration diagrams for mineralizing fluids at gold deposits of different age. Here and in Figure 2, Figure 3, Figure 4 and Figure 5, n is the number of measurements. Here and on Figure 2 trendlines are shown as dashed lines. The initial data on the fluid parameters are provided as Supplementary Materials.
Minerals 10 00050 g001
Figure 2. Temperature–pressure diagrams for mineralizing fluids at gold deposits of different age.
Figure 2. Temperature–pressure diagrams for mineralizing fluids at gold deposits of different age.
Minerals 10 00050 g002
Figure 3. Histograms of the temperatures of mineralizing fluids at gold deposits of different age.
Figure 3. Histograms of the temperatures of mineralizing fluids at gold deposits of different age.
Minerals 10 00050 g003
Figure 4. Histograms of the salinity of mineralizing fluids at gold deposits of different age.
Figure 4. Histograms of the salinity of mineralizing fluids at gold deposits of different age.
Minerals 10 00050 g004
Figure 5. Histograms of the pressure of mineralizing fluids at gold deposits of different age.
Figure 5. Histograms of the pressure of mineralizing fluids at gold deposits of different age.
Minerals 10 00050 g005
Figure 6. Boxplot diagrams for the temperatures of the mineralizing fluids of orogenic gold deposits of various age. Here and in Figure 7 and Figure 8: Cz—Cenozoic; Mz—Mesozoic; Pz—Paleozoic; NPR—Meso- and Neoproterozoic, Paleoproterozoic; AR—Meso-Neoarchean; 1—average; 2—outliers.
Figure 6. Boxplot diagrams for the temperatures of the mineralizing fluids of orogenic gold deposits of various age. Here and in Figure 7 and Figure 8: Cz—Cenozoic; Mz—Mesozoic; Pz—Paleozoic; NPR—Meso- and Neoproterozoic, Paleoproterozoic; AR—Meso-Neoarchean; 1—average; 2—outliers.
Minerals 10 00050 g006
Figure 7. Boxplot diagrams for the salinity of the mineralizing fluids of orogenic gold deposits of various age.
Figure 7. Boxplot diagrams for the salinity of the mineralizing fluids of orogenic gold deposits of various age.
Minerals 10 00050 g007
Figure 8. Boxplot diagrams for the pressure of the mineralizing fluids of orogenic gold deposits of various age.
Figure 8. Boxplot diagrams for the pressure of the mineralizing fluids of orogenic gold deposits of various age.
Minerals 10 00050 g008
Figure 9. The average levels of exhumation of orogenic gold deposits of different ages.
Figure 9. The average levels of exhumation of orogenic gold deposits of different ages.
Minerals 10 00050 g009
Table 2. Parameters of mineralizing fluids of Cenozoic gold deposits.
Table 2. Parameters of mineralizing fluids of Cenozoic gold deposits.
Deposit, RegionPhysicochemical Parameters of FluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Valdez Group, USA210–280 (2)0–6.0-1000–1500 (2)CO2 + H2O[6]
Venus, Canada231–316 (45)1.8–5.4-250–2700 (37)CO2 + H2O[7]
Monte Rosa gold district, Italy180–330 (19)1.0–10.10.86–0.931000–1500 (2)CO2 + H2O[8]
Fairview, Oro Fino, Canada275–313 (2)2.7–4.70.73–0.78800–1550 (7)CO2 + H2O[9]
Twin Lakes Canada270–323 (2)1.2–8.60.77–0.78-H2O[9]
Alaska-Juneau, USA150–300 (2)0.0–5.0-1000–2000 (2)CO2 + H2O[10]
Ibex, USA150–300 (2)0.0–5.0-1000–2000 (2)CO2 + H2O[10]
Reagan, USA150–280 (2)0.0–5.0-1000–2000 (2)CO2 + H2O[10]
Treadwell, USA190–240 (2)5.0–8.0-800–1500 (2)H2O[10]
Bralorne-Pioneer, Canada140–350 (10)0.8–5.0-500–1750 (4)CO2 + H2O[11]
Monte Rosa gold district, Italy230–300 (2)1.2–1.9-600–1300 (2)CO2 + H2O[12]
Bralorne-Pioneer, Canada150–390 (36)0.9–10.50.62–0.93-H2O[13]
Callery, New Zealand300–350 (2)2.0-900–1200 (2)CO2 + H2O[14]
Shotover, New Zealand160–200 (2)0.5-500–1000 (2)CO2 + H2O[14]
Mt. Alta, New Zealand160–260 (2)2.0-500–1000 (2)CO2 + H2O[14]
Nenthorn, New Zealand190 (1)2.0-150 (1)CO2 + H2O[14]
Böckstein, Austria240–270 (8)5-700 (1)CO2 + H2O[15]
Monte Rosa gold district, Italy250–300 (4)5-1000 (1)CO2 + H2O[15]
Kensington, USA170–220 (2)5.0–8.0-900 (2)CO2 + H2O[16]
Jualin, USA170–220 (2)6.5–9.0-900 (2)CO2 + H2O[16]
Shannan area, China232–335 (4)4.0–15.00.68–0.95-H2O[17]
Muteh, Iran156–305 (4)2.2–17.5--CO2 + H2O[18]
Zopkhito, Georgia Republic185–380 (53)0.5–4.90.52–0.91-H2O[19]
La Herradura, Mexico265–283 (7)3.5–4.1-670–2015 (7)CO2 + H2O[20]
Daping, China279–424 (8)3.7–14.60.69–0.781335–3400 (2)CO2 + H2O[21]
Mayum, China229–357 (19)1.2–5.80.65–0.841400–3500 (18)CO2 + H2O[22]
Zhemulang, China146–292 (24)3.2–7.70.79–0.96-H2O[23]
Mazhala, China148–303 (30)1.6–5.10.75–0.94-H2O[23]
Qolqoleh, Iran204–386 (6)4.9–19.6-1600–2000 (2)CO2 + H2O[24]
Bangbu, China167–336 (6)2.2–9.50.63–0.96-H2O[25]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 3. Parameters of mineralizing fluids of Mesozoic gold deposits.
Table 3. Parameters of mineralizing fluids of Mesozoic gold deposits.
Deposit, RegionPhysicochemical Parameters of FluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Oriental mine, USA280–340 (2)0.0–3.5670–2500CO2 + H2O[26]
Big Hurrah mine, USA155–240 (9)2.2–6.80.88–0.95-H2O[27]
Mouther Lode, USA290–350 (2)2.0-1000–2000CO2 + H2O[28]
Yata, China150–240 (2)5.00.86–0.96-H2O[29]
Daeil, Korea243–375 (4)3.1–9.10.56–0.89-H2O[30]
Macraes, New Zealand300–350 (2)1.0-2500–3500CO2 + H2O[14]
Glenorchy, New Zealand200–300 (2)1.0-2000CO2 + H2O[14]
Barewood, New Zealand3001.0–2.0-2000CO2 + H2O[14]
Bendigo, New Zealand<2901.9->1000CO2 + H2O[14]
Bonanza, New Zealand2001.5-800–1400CO2 + H2O[14]
Quartz Hill, USA375 (1)6.0-1350CO2 + H2O[31]
Lover Dominion, Canada296 (1)3.4--H2O[32]
Aime, Canada263 (1)4.9-2300 (1)CO2 + H2O[32]
Gold Run, Canada278–293 (2)4.0–4.3-1325–1500 (2)CO2 + H2O[32]
Portland Creek, Canada255 (1)4.0--H2O[32]
Lloid, Canada304–308 (2)3.8–4.3-870–1440 (2)CO2 + H2O[32]
Hunker Dome, Canada310–332 (2)4.0–5.0-750–1250 (2)CO2 + H2O[32]
Mitchell, Canada296–341 (4)2.4–6.1-450–875 (4)CO2 + H2O[32]
Sheba, Canada281–341 (6)2.9–6.8-450–1800 (6)CO2 + H2O[32]
Lone Star, Canada292 (1)3.2-300CO2 + H2O[32]
Hilchey, Canada297 (1)5.8-300CO2 + H2O[32]
27 Pup, Canada313 (1)3.5-300CO2 + H2O[32]
Violet, Canada225 (1)6.1-350CO2 + H2O[32]
Virgin, Canada198 (1)5.5-625CO2 + H2O[32]
Amethyst, Canada341 (1)1.2-350CO2 + H2O[32]
Samdong, Korea102–426 (24)2.7–14.00.88–0.941300–1900 (2)CO2 + H2O[33]
Barneys Canyon, USA225–345 (2)1.50.60–0.85-H2O[34]
Mouse Pass, USA210–3601.0–3.0-1000–1500CO2 + H2O[35]
Nuka Bay, USA250–3003.0–6.0-2300–3000CO2 + H2O[35]
Chichagof mine, USA225–2506.0-1000CO2 + H2O[35]
Berners Bay, USA200–2353.0–6.0-900CO2 + H2O[35]
Alaska-Juneau mine, USA300–3750.0–5.0-1500–4000CO2 + H2O[35]
Treadwell mine, USA190–2400.0–5.0-800–1500CO2 + H2O[35]
Sumdum Chief mine, USA240–3200.0–5.0-800–1500CO2 + H2O[35]
Willow Creek, USA300–3251.0–2.5--H2O[35]
Valdez Creek, USA290–305--1000–2300CO2 + H2O[35]
Fairbanks, USA275–3753.0–5.0--H2O[35]
Ryan Lode, USA270–3500.0–8.0-500–750CO2 + H2O[35]
Fort Knox, USA270–3300.0–8.0-1250–1500CO2 + H2O[35]
Table Mountain, USA320–3703.0–7.0--H2O[35]
Rock Creek, USA184–2725.0-1000–1400CO2 + H2O[35]
Chandalar, USA265–3000.8–3.0-750–825CO2 + H2O[35]
Dongping, China195–340 (4)2.5–21.00.64–1.04-H2O[36]
Niuxinshan, China180–336 (11)4.1–9.60.77–0.92750–3700 (9)CO2 + H2O[37]
Hanshan, China150–310 (5)3.1–10.70.72–0.95-H2O[38]
Kyuchus, Russia118 (1)2.80.97-H2O[39]
Svetloye, Russia145–215 (4)6.4–14.00.90–1.02-H2O[39]
Tas-Uryakhskoye, Russia155 (1)2.00.93-H2O[39]
Baidi, China172–266 (5)3.9–6.60.84–0.93-H2O[40]
Banqi, China180–230 (2)3.20.86–0.91-H2O[40]
Dongbeizhai, China120–170 (2)5.00.94–0.98-H2O[40]
Gaolong, China125–290 (5)2.4–5.10.78–0.96-H2O[40]
Gedang, China155–305 (4)3.4–6.00.77–0.94-H2O[40]
Jinya, China143–270 (4)2.9–5.10.82–0.95-H2O[40]
Lannigou, China160–253 (3)4.5–4.90.84–0.95-H2O[40]
Mingshan, China136–185 (2)4.0–5.00.92–0.96-H2O[40]
Shijia, China152–225 (3)1.9–6.70.87–0.93-H2O[40]
Humboldt, USA170–340 (12)0.2–11.2-1200–2400 (2)CO2 + H2O[41]
Dun Glen, USA150–260 (4)1.0–8.8-1200–2400 (2)CO2 + H2O[41]
Santa Rose, USA200–360 (12)0.2–8.3-1200–2400 (2)CO2 + H2O[41]
Ten Mile, USA240–350 (2)1.0–7.9-1200–2400 (2)CO2 + H2O[41]
Eugene, USA170–330 (12)0.2–9.5-1200–2400 (2)CO2 + H2O[41]
Slumbering, USA180–330 (8)0.4–10.4-1200–2400 (2)CO2 + H2O[41]
Antelope, USA180–340 (8)0.2–8.4-1200–2400 (2)CO2 + H2O[41]
Trinity, USA195–300 (4)1.0–9.9-1200–2400 (2)CO2 + H2O[41]
Pine Forest, USA220–330 (8)0.4–16.7-1200–2400 (2)CO2 + H2O[41]
Pueblo, USA250–350 (4)0.8–17.5-1200–2400 (2)CO2 + H2O[41]
Jackson, USA100–230 (2)6.7–15.3-1200–2400 (2)CO2 + H2O[41]
Quinn River, USA170–330 (4)1.8–20.0-1200–2400 (2)CO2 + H2O[41]
Wangu, China138–310 (14)3.0–6.00.73–0.97-H2O[42]
Kuzhubao and Bashishan, China180–330 (8)0.8–13.00.77–0.90-H2O[43]
Sanshandao, China150–355 (35)1.5–7.10.62–0.951200–2100 (46)CO2 + H2O[44]
Dongping, China250–372 (33)4.7–8.90.64–0.87600–1800 (31)CO2 + H2O[45]
Donlin Creek, USA232–237 (2)6.30.88-H2O[46]
Mayskoye, Russia119–515 (28)0.9–37.50.57–1.13420–1240 (28)CO2 + H2O[47]
Anjiayingzi, China160–338 (3)2.0–4.5--CO2 + H2O[48]
Paishanlou, China128–447 (14)3.1–33.30.89–0.961400–1900 (2)CO2 + H2O[49]
Denggezhuang, China80–388 (45)1.1–16.40.71–0.99 H2O[50]
Gubong, Korea201–4320.4–17.3-670–2100CO2 + CH4 + H2O[51]
Rushan, China96–324 (4)0.2–12.60.80–1.04-CO2 + H2O[52]
Baijintazi, China180–386 (10)6.9–13.20.72–0.97-H2O[53]
Heijintaizi, China182–361 (15)6.7–18.50.85–0.94-H2O[53]
Nezhdaninskoye, Russia129–378 (40)0.8–31.10.65–1.12390–1840 (33)CO2 + H2O[54]
Linglong, China80–360 (14)3.0–14.60.60–1.00-H2O[55]
Sarylakh, Russia130–380 (3)0.5–6.40.62–0.94-H2O[56]
Sentachan, Russia200–325 (2)5.70.73–0.91-H2O[56]
Dyby, Russia226–495 (6)6.9–35.30.86–0.91477–1495 (4)CO2 + H2O[57]
Ergelyakh 1, Russia243–358 (5)3.7–32.70.84–0.98 H2O[57]
Ergelyakh 2, Russia264–304 (4)4.5–8.60.77–0.82940–1140 (2)CO2 + H2O[57]
Ergelyakh 3, Russia268 (1)3.60.80 H2O[57]
Arkachan, Russia250–385 (2)3.7–26.30.83–0.891300–1700 (2)CO2 + H2O[57]
Kimpichenskoye Russia200 (1)32.01.13-H2O[58]
Arkachan, Russia230–290 (4)12.0–20.00.87–0.99-H2O[58]
Natalkinskoye, Russia205–359 (12)1.9–6.20.60–0.911120–2260 (13)CO2 + H2O[59]
Rodionovskoye, Russia294–337 (2)6.8–7.30.87–0.951180–1530 (2)CO2 + H2O[60]
Shuiyindong, China212–225 (2)4.7–6.30.89-H2O[61]
Yata, China151–261 (9)2.1–7.20.85–0.94-H2O[61]
Samgwang, Korea145–385 (13)0.1–11.20.70–0.93-H2O[62]
Sentachan, Russia155–320 (11)1.6–7.40.82–1.031310–1960 (13)CO2 + H2O[63]
Sarylakh, Russia170–312 (12)1.6–6.80.89–1.06300–3430 (17)CO2 + H2O[63]
Guodawa, Songweizi, Tonggoucheng, and Xiaomiaoshan, China115–335 (20)5.6–11.60.72–1.02-H2O[64]
Shkolnoye, Russia189–350 (23)2.1–9.30.77–1.03365–2320 (8)CO2 + H2O[65]
Badran, Russia140–320 (3)4.5–100.80–0.96100–2000 (2)CO2 + H2O[66]
Pogromnoye, Russia283–363 (6)6.5–11.10.81–1.02980–2800 (11)CO2 + H2O[67]
Wenyu, China114–330 (12)0.1–12.80.63–0.98850–1780 (4)CO2 + H2O[68]
Banqi, China210–290 (2)2.3–4.20.77–0.87-H2O[69]
Bojitian, China117–193 (3)0.5–6.90.93–0.95-H2O[69]
Lannigou, China85–272 (8)0.5–8.70.85–0.97-H2O[69]
Shuiyindong, China126–225 (5)0.2–6.30.89–0.95-H2O[69]
Taipingdong, China172–269 (7)1.9–7.30.84–0.94-H2O[69]
Yata, China106–231 (3)0.7–7.90.90–0.96-H2O[69]
Zimudang, China95–273 (5)0.2–7.50.84–0.97-H2O[69]
Yangzhaiyu, China175–313 (16)5.1–13.60.78–0.99-CO2 + H2O[70]
Qianhe, China160–305 (64)6.1–21.80.93–0.95-H2O[71]
Sanshandao, China112–350 (12)0.4–10.30.75–0.96-H2O[72]
Jinshan China109–340 (15)0.6–8.90.70–0.96-H2O[73]
Gatsuurt, Mongolia194–355 (10)---CO2 + H2O[74]
Taipingdong, China97–300 (8)0.02–8.1--CO2 + H2O[75]
Zimudang, China99–300 (6)0.04–7.5--CO2 + H2O[75]
Shuiyindong, China83–250 (8)0.02–6.9--CO2 + H2O[75]
Bojitian, China80–198 (2)0.9–7.5--H2O[75]
Wenyu, China114–417 (36)0.0–12.8-1570–2760 (6)CO2 + H2O[76]
Sanshandao, China101–390 (6)0.2–18.40.75–0.78-H2O[77]
Arkachan, Russia200–385 (19)3.7–26.30.84–1.071060–1830 (13)CO2 + H2O[78]
Canan area, Honduras240–338 (8)0.9–6.20.68–0.83-H2O[79]
Zhaishang, China92–372 (20)0.2–23.10.71–1.03238–781 (20)H2O[80]
Qiangma, China145–365 (18)0.0–12.7-1750–2810 (4)CO2 + H2O[81]
Dongfeng, China117–341 (6)0.5–11.70.57–1.002260–3380 (2)CO2 + H2O[82]
Linglong, China103–374 (8)0.3–13.30.82–1.012280–3360 (2)CO2 + H2O[82]
Erdaogou, Xiaobeigou, China125–370 (46)0.9–17.40.81–0.98-H2O[83]
Sanshandao, China101–390 (3)0.2–18.40.75–0.78-H2O[84]
Anjiayingzi, China180–358 (11)1.3–15.60.82–0.91500–1100CO2 + H2O[85]
Nancha, China132–432 (12)0.4–11.70.51–0.941520–3670 (3)CO2 + H2O[86]
Taishang, China158–336 (39)0.2–9.10.73–0.92-H2O[87]
Jinchangyu, China120–410 (10)3.0–28.3--CO2 + H2O[88]
Hetai, China130–310 (4)2.7–13.90.70–1.02500–1710 (4)CO2 + H2O[89]
Liyuan, China136–408 (18)0.5–12.60.65–0.981310–3470 (4)CO2 + H2O[90]
Baolun, China140–376 (6)3.0–9.0-1000–1600 (2)CO2 + H2O[91]
Gezhen, China140–370 (8)0.5–10.5--H2O[91]
Dongping, China154–382 (68)0.1–35.4-1000 (1)CO2 + H2O[92]
Xiadian, China111–418 (16)0.2–22.90.61–1.11400–2470 (4)CO2 + H2O[93]
Luoshan, China212–393 (12)3.0–9.10.47–0.92770–1850 (2)CO2 + H2O[94]
Fushan, China211–380 (18)0.0–11.20.43–0.98770–1850 (2)CO2 + H2O[94]
Bake, China157–402 (12)2.2–13.7-460–800 (5)CO2 + H2O[95]
Chanziping, China138–156 (18)1.8–11.9-400–960 (12)CO2 + H2O[95]
Dagaowu, China176 (2)4.9–9.6-460 (1)CO2 + H2O[95]
Fenshuiao, China178–183 (2)10.1–10.2-220–680 (2)CO2 + H2O[95]
Gaokeng, China171 (2)6.5–10.5-450 (1)CO2 + H2O[95]
Hamashi, China145–421 (3)2.9–13.1--H2O[95]
Huangjindong, China225–397 (9)3.6–10.9-990 (2)CO2 + H2O[95]
Huangshan, China156–350 (3)1.2–24.0-420–590 (2)CO2 + H2O[95]
Huangtudian, China190–260 (2)6.6–6.9-390–480 (2)CO2 + H2O[95]
Jinshan, China109–372 (53)0.6–16.5-350–950 (10)CO2 + H2O[95]
Kengtou, China148–160 (2)6.4–9.1-390 (1)CO2 + H2O[95]
Miaoxiafan, China158 (2)4.1–9.2-410 (1)CO2 + H2O[95]
Mobin, China170–203 (9)9.3–2.1-210–790 (4)CO2 + H2O[95]
Pingshui, China214–282 (6)1.2–8.7-H2O[95]
Taojinchong, China107–352 (37)0.5–20.1-580–770 (2)CO2 + H2O[95]
Tonggu, China97–300 (11)1.1–10.4--H2O[95]
Tongshulin, China183 9203.9–9.9-480 910CO2 + H2O[95]
Wangu, China138–310 (26)0.8–12.6--H2O[95]
Xi’an, China147–325 (8)3.3–8.5-660 (1)CO2 + H2O[95]
Xichong, China200–304 (5)6.1–7.5-480 (2)CO2 + H2O[95]
Xintang, China125 (2)2.9–4.2-320 (1)CO2 + H2O[95]
Yanghanwu, China151–185 (4)3.4–8.2-400–480 (2)CO2 + H2O[95]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 4. Parameters of mineralizing fluids of Paleozoic gold deposits.
Table 4. Parameters of mineralizing fluids of Paleozoic gold deposits.
Deposit, RegionPhysicochemical Parameters of FluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Hill End goldfield, Australia260–360 (2)2.40.59–0.80-H2O[96]
Haut Allier, France260–420 (10)0.5–8.10.44–0.85-H2O[97]
Kvartsytovye gorki, Kazakhstan255–305 (7)6.0–7.00.93–0.94275–900 (4)CO2 + CH4 + H2O[98]
Zholymbet, Kazakhstan255–345 (45)7.0–17.00.89–1.041000–2100 (4)CO2 + H2O[98]
Bestobe, Kazakhstan270–315 (19)5.0–14.01.03–1.08900–1600 (8)CO2 + CH4 + H2O[98]
N. Aksu, Kazakhstan305–365 (20)12.0–17.00.94–1.011400–2600 (8)CO2 + CH4 + H2O[98]
Stepnyak, Kazakhstan270–365 (14)11–13.00.96–1.031100–1800 (6)CO2 + H2O[98]
S. Aksu, Kazakhstan190–345 (44)8.0–12.00.89–1.051200–2800 (8)CO2 + CH4 + H2O[98]
Zhana–Tyube, Kazakhstan255–355 (43)9.0–12.00.88–1.081250–3500 (11)CO2 + CH4 + H2S + H2O[98]
Flying Pig, Australia135–370 (32)1.1–10.10.56–0.96-H2O[99]
Tyrconnel, Australia280 (1)4.70.8H2O[99]
Pataz region, Peru130–320 (9)7.0–37.50.76–1.06-H2O[100]
Saralinskoye, Russia150–365 (8)6.3–29.30.77–1.07770–2900 (12)CO2 + CH4 + H2O[101]
Nagambie, Australia130–305 (7)3.7–6.40.76–0.96850–1100 (2)CO2 + H2O[102]
Kommunar, Russia210–340 (50)7.9–15.20.89–1.06930–3500 (11)CO2 + CH4, H2O[103]
Zarmitan, Uzbekistan270–380 (16)3.5–20.00.74–1.07820–2730 (30)CO2 + CH4 + H2O[104]
Deborah, Australia220–400 (3)0.1–10.00.65–0.932000–3000 (2)CO2 + CH4 + H2O[105]
Sukhoi log, Russia165–380 (45)3.7–9.50.72–1.06230–2450 (28)CO2 + CH4 + N2 + H2O[106]
Berezovskoye, Russia270–365 (14)9.5–26.70.91–1.091470–3460 (21)CO2 + H2O[107]
Fosterville, Australia170 (1)0.50.90-H2O[108]
Vorontsovskoye, Russia100–150 (7)6.4–9.20.98–1.00-H2O[39]
Biards district, France125–375 (6)1.7–7.40.54–0.97-H2O[109]
Mayskoye, Russia100–455 (29)1.4–42.70.63–1.28-CO2 + CH4 + H2O[110]
CSA deposit, Cobar, Australia200–350 (4)0.1–5.00.66–0.911500–2000 (4)CO2 + H2O[111]
Moulin de Cheni, France150–250 (2)4.0–8.00.87–0.95-H2O[112]
Jiapigou, China150–350 (4)0.7–6.50.58–0.93-H2O[113]
Bulong, China160–395 (30)5.3–46.20.63–1.18-H2O[114]
Charters Tauers, Australia80–305 (19)0.2–28.30.71–1.08-H2O[115]
Sarekoubu, China255–395 (5)---CO2 + CH4 + H2O, H2O[116]
Qingshui, China155–355 (3)3.1–7.50.69–0.94-H2O[117]
Tanjianshan, China120–320 (5)3.7–10.80.80–1.00-CO2 + CH4 + H2O[118]
Sandwich Point, Canada150–335 (26)2.0–25.00.69–1.09-CO2 + CH4 + H2O[119]
Fosterville, Australia119–2640.1–10.70.88–0.951800–2400CO2 + CH4 + N2 + H2O[120]
Stawell-Magdala, Australia110–2381.4–5.60.86–0.97 H2O[120]
Bendigo, Australia84–3150.9–7.80.77–0.941400–1600CO2 + CH4 + N2 + H2O[120]
Wattle Gully, Australia70–2251.5–6.3-1600CO2 + CH4 + N2 + H2O[120]
Maldon (1), Australia177–18720.3–21.60.85–1.04-H2O[120]
Maldon (2), Australia101–3790.9–13.40.74–0.97-H2O[120]
Mount Piper, Australia92–3310.7–7.10.74–0.90-H2O[120]
Woods Point, Australia129–2791.6–4.00.78–0.95-H2O[120]
Walhalla, Australia122–2830.2–6.90.85–0.94-H2O[120]
Bogunayskoye, Russia110–350 (88)0.2–49.00.73–1.22100–1600 (31)CO2 + CH4 + N2 + H2S, H2O[121]
Annage, China140–380 (42)0.5–22.00.71–1.02790–1300 (2)CO2 + CH4 + H2O[122]
Woxi, China178–357 (24)1.6–9.30.71–0.88-H2O[123]
Huangshan, China127–376 (34)0.2–9.60.65–0.94870–2610 (34)CO2 + H2O[124]
Yingchengzi, China104–400 (12)1.1–12.40.62–0.9780–3260 (9)CO2 + H2O[125]
Limarinho, Portugal180–330 (6)3.0–7.30.73–0.91600–3500 (6)CO2 + CH4 + N2 + H2O[126]
Vasil’kovskoe, Kazakhstan120–550(90)2.0–20.00.46–0.96200–2500 (68)CO2 + CH4 + N2 + H2O[127]
Woxi, China109–396 (35)0.1–12.5-140–470 (10)CO2 + H2O[95]
Sukoi Log, Russia130–385 (61)3.7–9.50.65–1.09640–2630 (35)CO2 + CH4 + N2 + H2O[128]
Verninskoye, Russia136–356 (31)1.4–8.10.84–1.05570–3150 (10)CO2 + H2O[128]
Dogaldyn, Russia128–339 (12)1.4–7.30.90–1.05960–3230 (10)CO2 + H2O[128]
Uryakh, Russia191–361 (7)2.5–9.10.94–1.081050–3290 (6)CO2 + H2O[128]
Irokinda, Russia179–453 (31)3.9–46.30.97–1.15840–5030 (8)CO2 + H2O[128]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 5. Parameters of ore-forming fluids of Meso- and Neoproterozoic gold deposits.
Table 5. Parameters of ore-forming fluids of Meso- and Neoproterozoic gold deposits.
Deposit, RegionPhysicochemical Parameters of FluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Olimpiadinskoye, Russia105–410 (2)1.9–28.70.68–0.93255–3045 (29)CO2 + CH4 + N2 + H2S, H2O[129]
Cachoeira de Minas, Sao Francisco, Brazil250–350 (2)6.00.68–0.862000 (1)CO2[130]
Veduga, Russia164–368 (12)8.2–19.30.72–1.04120–1820 (8)CO2 + CH4, CH4, H2O[131]
Olimpiadinskoye, Russia190–449 (10)4.8–17.40.67–0.92450–2700 (11)CH4, N2, CO2 + N2, H2O[131]
Harnas area, Sweden85–395 (84)3.0–19.00.48–1.11-CO2, H2O[132]
Paiol mine, Brazil90–410 (16)3.0–33.00.81–1.07-H2O[133]
Udereyskoye, Russia120–180 (2)30.31.12–1.20-H2O[56]
Tunkillia, Nuckulla Hill, Barns, and Weednanna, Central Gawler Craton, Australia88–350 (18)0.1–23.00.68–1.13-CO2, H2O[134]
Tarcoola gold field, S. Australia265–335 (9)1.6–6.70.69–0.92-CO2 + CH4, H2O[135]
Telfer, Australia143–454 (135)2.0–50.0-1500–3000 (2)CO2, H2O[136]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 6. Parameters of ore-forming fluids of Paleoproterozoic gold deposits.
Table 6. Parameters of ore-forming fluids of Paleoproterozoic gold deposits.
Deposit, RegionPhysicochemical Parameters of FluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Tartan Lake, Canada250–390 (4)2.2–12.60.44–0.911200–2400 (2)CO2, H2O[137]
Star Lake, Canada100–520 (112)0.5–42.10.30–1.401000–6300 (14)CO2 + CH4, H2O[138]
Flin Flon Domain, Canada174–331 (20)0.4–16.20.65–1.01-CO2, H2O[139]
Pirila, Finland130–325 (4)1.8–25.00.87–1.001500–1800 (2)CO2 + CH4, H2O[140]
Star Lake (La Ronge), Canada160–340 (5)1.3–8.20.69–0.97-CO2, H2O[141]
Caxias, Brazil205–378 (2)10.80.70–0.951600–3700 (3)CO2 + N2, H2O[142]
Fazenda Canto, Brazil280–500 (6)2.6–4.00.72–0.931000–3500 (4)CO2 + CH4 + N2, H2O[143]
Fazenda Maria Preta, Brazil320–420 (2)--2100–4400 (2)CO2 + CH4 + N2, H2O[143]
Fazenda Brasileiro, Brazil400–500 (7)--1800–6500 (7)CO2 + CH4 + N2, H2O[143]
Guarim, Brazil140–310 (4)5.6–5.70.76–0.97860–2900 (4)CO2 + CH4 + N2, H2O[144]
Batman, Australia242–458 (17)1.8–20.60.45–0.96-CO2 + CH4, CH4, H2O[145]
Serrinha, Brazil280–430 (4)4.5–21.00.44–0.931300–3000 (2)CO2 + CH4 + N2, H2O[146]
Callie, Australia48–404 (61)0.5–33.00.52–1.19-CO2 + CH4 + N2, H2O[147]
Coyote Prospect, Australia183–434 (10)0.1–12.50.55–0.98-CO2 + CH4 + N2, H2O[147]
Groudrust, Australia161–490 (9)0.2–13.90.49–0.97-CO2 + CH4 + N2, H2O[147]
Tanami gold field, Australia101–452 (48)0.1–21.20.57–1.10-CO2 + CH4 + N2, H2O[147]
Angovia, W. Africa156–370 (20)1.2–8.40.69–0.981050–1350 (2)CO2 + CH4 + N2[148]
Chega Tudo, Brazil100–371 (42)0.2–12.30.52–1.042000–3000 (2)CO2 + CH4, CO2, H2O[149]
Bjorkdal, Sweden136–400 (13)2.2–14.00.55–1.01500–1800 (2)CO2, H2O[150]
Carara, Brazil264–346 (2)5.0–5.40.66–0.821800–3600 (2)CO2 + CH4 + N2[151]
Morila, W. Africa175–339 (8)3.0–20.30.65–1.03-CH4 + N2, H2O[152]
Baboto, Mali, W Africa255–320 (3)1.5–10.70.80–0.81-CO2 + CH4 + N2 + H2O[153]
Gara, Mali, W. Africa140–380 (15)4.5–57.10.78–1.24750–2200 (4)CO2 + CH4 + N2 + H2O[153]
Loulo–3, Mali, W Africa170–310 (12)0.2–11.70.75–0.931550 (1)CO2 + CH4 + N2 + H2O[153]
Yalea, Mali, W. Africa175–519 (15)0.7–62.40.75–1.601450 (1)CO2 + CH4 + N2 + H2O[153]
Piaba, Brasil183–3772.5–7.20.96–0.991250–2080CO2 + CH4, H2O[154]
Turmalina, Brazil106–393 (18)0.2–23.8-1000–2000CO2, H2O[155]
Piaba, Brasil180–3602.5–7.2-1500–2800CO2, H2O[156]
Julie, Ghana210–275 (28)1.9–8.60.41–0.99-CO2, H2O[157]
Lamego, Brazil300–375 (18)2.0–9.00.68–0.942660–3500 (3)CO2 + CH4[158]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 7. Parameters of mineralizing fluids of Meso-Neoarchean gold deposits.
Table 7. Parameters of mineralizing fluids of Meso-Neoarchean gold deposits.
Deposit, RegionPhysicochemical parameters of fluidsReference
T, °CSalinity *, wt.%d, g/cm3P, barComposition **
Henderson, Canada205–215 (2)31.5–32.01.11–1.25330–1300 (12)CO2 + H2O[159]
McInture-Hollinger, Canada175–348 (5)6.1–19.80.79–1.00-CO2 + CH4 + N2 + H2O[160]
Kolar, India210–420 (14)3.0–12.00.70–0.851300–1600 (2)CO2[161]
Renabie, Canada161–360 (3)6.0–12.50.89–1.002550 (1)CO2 + H2O[162]
Mink Lake, Canada250–345 (7)5.3–6.10.65–0.85-CO2 + H2O[163]
Sigma, Canada60–395 (17)25.0–34.00.65–1.072000 (1)CO2 + CH4, H2O[164]
Kolar, India235–340 (75)-0.57–1.24700–6400 (24)CO2 + CH4[165]
Pamour, Canada260–325 (7)3.5–6.00.70–0.81-CO2 + CH4[166]
Abbots, South Africa242–319 (2)6.40.74–0.87-CO2 + CH4 + N2, H2O[167]
Bellevue, South Africa233–314 (2)4.80.75–0.87-CO2 + CH4 + N2, H2O[167]
Pioneer, South Africa195–307 (4)1.8–8.50.73–0.93-CO2 + CH4 + N2, H2O[167]
Surluga, Canada180–300 (30)1.0–23.00.90–1.01-CO2 + CH4 + N2, H2O[168]
Sigma, Canada113–425 (8)1–40--CO2 + CH4 + N2, H2O[169]
Donalda, Canada100–380 (6)4–41--CO2 + CH4 + N2, H2O[169]
Dumont-Bras d’Or, Canada175–398 (6)---CO2 + CH4 + N2[169]
Champion lode, Kolar, India138–421 (2)29.2–49.81.08–1.143150–3600 (2)CO2, H2O[170]
Nundydroog mine, Kolar, India170–440 (4)5.0–30.00.86–1.13-CO2, H2O[170]
Wiluna, W. Australia243 (1)23.21.02-H2O[171]
Bronzewing, W. Australia103–445 (47)0.2–26.00.76–1.14-CO2 + CH4, CH4, H2O[172]
Siscoe, Canada156–330 (6)2.0-9.00.67–0.98-CO2 + H2O[173]
Junction, W. Australia69–400 (7)8.8–42.00.63–1.07700–4400 (2)CO2 + CH4, H2O[174]
Golden Eagle, Mosquito Creek belt, W. Australia99-374 (10)0.0–21.70.52–0.77-CO2 + CH4, H2O[175]
Orenada 2, Canada65–195 (8)4.8-26.51.00–1.14-CO2 + CH4, H2O[176]
Hutti, India300 (2)3.9–13.50.76–0.871000–1700 (2)CO2[177]
Golden Crown, W. Australia257–376 (2)2.30.48–0.82500–3300 (6)CO2 + H2O[178]
Wiluna, W. Australia146–319 (3)23.2–23.80.93–1.10700–1680 (4)CO2, H2O[179]
Ramepuro, E. Finland235–355 (3)6.5-10.00.67–0.911000 (1)CO2 + CH4, CH4[180]
Woodcutters field, W. Australia210–462 (4)5.7–14.10.76–0.90-CO2, H2O[181]
McPhees, W. Australia106–410 (9)1.0–21.80.67–1.11-CO2 + CH4 + N2, H2O[182]
Tarmoola, W. Australia261–335 (8)1.6–5.10.72–0.93-CO2, H2O[183]
Mount Charlotte, Australia220–312 (5)4.5–5.70.74–0.891500–2200 (6)CO2 + CH4, H2O[184]
Giant, Canada180–360 (4)4.0–9.00.60–0.961000–2000 (2)CO2 + CH4, H2O[185]
Uti, India180–397 (8)0.5–22.00.55–1.01930–2560 (4)CO2 + H2O[186]
Primrose, Kwekwe, Zimbabwe222–280 (6)1.6–9.20.88–0.90825–2780 (4)CO2, H2O[187]
Jojo, Kwekwe, Zimbabwe145–219 (5)-0.97–0.99990–3100 (4)CO2, H2O[187]
Indarama, Kwekwe, Zimbabwe80–144 (3)6.0–>221.02–1.231180–2850 (4)CH4 + N2, H2O[187]
Hutti, India205–2801.7–6.4-500–2000CO2 + CH4, H2O[188]
Hira-Buddini, India128–3200.5–220.67–1.09-CO2 + CH4, H2O[188]
Sunrise Dam, W. Australia198–433 (18)3.0–21.40.67–0.90800–2930 (19)CO2 + H2O[189]
Missouri, W. Australia61–402 (16)3.0–26.00.90–1.01420–2630 (30)CO2 + CH4 + H2S, CH4[190]
Klipwal Gold Mine, South Africa115–367 (316)0.3–19.50.35–1.051100–2500 (4)CO2 + CH4, H2O[191]
Notes: * salinity of fluid expressed in wt% NaCl equiv.; ** composition of gas phase of fluid inclusions; Number of determinations is shown in parentheses.
Table 8. Median values of main physicochemical parameters of mineral-forming fluids of orogenic gold deposits.
Table 8. Median values of main physicochemical parameters of mineral-forming fluids of orogenic gold deposits.
Age, MaTemperature, °CSalinity, wt.% NaCl EquivnPressure, barn
Cenozoic
0–65
242
(128–424)
3.6
(0.0–19.6)
3081305
(150–3600)
106
Mesozoic
65–252
260
(80–515)
5.9
(0.0–37.5)
14781200
(100–4000)
440
Paleozoic
2252–540
267
(70–550)
7.3
(0.1–49.0)
8441500
(80–5030)
375
Meso- and Neoproterozoic
540–1600
255
85–454
10.0
(0.1–50.0)
1811200
(120–3900)
55
Paleoproterozoic
1600–2500
252
(48–520)
7.1
(0.5–62.4)
4652080
(500–6500)
57
Meso-Neoarchean
2500–3200
254
(50–462)
6.1
(0.0–49.8)
2571680
(330–6400)
135
n: Number of determinations; Minimum and maximum values are shown in parentheses.
Table 9. Median values of main physicochemical parameters of mineral-forming fluids of large (≥100 tonnes Au) orogenic gold deposits.
Table 9. Median values of main physicochemical parameters of mineral-forming fluids of large (≥100 tonnes Au) orogenic gold deposits.
Age, MaTemperature, °CSalinity, wt.% NaCl EquivnPressure, barn
Cenozoic
0–65
255
(140–424)
3.7
(0.5–14.6)
581335
(500–3400)
17
Mesozoic
65–252
277
(80–515)
5.8
(0.01–37.5)
5851220
(190–3380)
206
Paleozoic
252–540
280
(80–550)
7.7
(0.2–28.3)
3421590
(150–3460)
133
Meso- and Neoproterozoic
540–1600
275
(143–454)
14.2
(1.0–50.0)
511200
(120–3900)
54
Paleoproterozoic
1600–2500
221
(48–510)
13.2
(0.5–62.4)
891500
(1250–2800)
5
Meso-Neoarchean
2500–3200
280
(60–462)
7.0
(0.1–49.8)
692100
(700–6400)
49
n: Number of determinations; Minimum and maximum values are shown in parentheses.
Back to TopTop