# A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Data Models of the Redundant Dictionary and FOMP Algorithm

#### 2.1. Redundant Dictionary

#### 2.2. OMP

#### 2.3. The Proposed FOMP Algorithm

## 3. IDCQGA-Based FOMP Algorithm

#### 3.1. The Principle of DCQGA

#### 3.1.1. Double Chains Qubit Encoding

#### 3.1.2. Quantum Rotation Gate Updating

#### 3.1.3. Quantum Chromosome Mutation

#### 3.2. The Proposed IDCQGA

#### 3.2.1. High Density Qubit Encoding

#### 3.2.2. Adaptive Step Size for Updating

#### 3.2.3. Quantum $\pi /6$-Gate for Mutation

#### 3.3. FOMP Algorithm Combined with IDCQGA

## 4. Simulation Results and Analysis

#### 4.1. Experiment 1 and Analysis: Performance of the IDCQGA

#### 4.2. Experiment 2 and Analysis: Performance of the OMP Based on IDCQGA

#### 4.3. Experiment 3 and Analysis: Performance of the FOMP Based on IDCQGA

#### 4.4. Experiment 4 and Analysis: The Applicability of the Proposed Algorithms for Radar Signals

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Goodwin, M. Adaptive Signal Models: Theory, Algorithms, and Audio Applications. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1997. [Google Scholar]
- Mallat, S.; Zhang, Z. Matching pursuit with time-frequeney dictionaries. IEEE Trans. Signal Process.
**1993**, 41, 3397–3415. [Google Scholar] [CrossRef] - Xu, S.; Yang, X.; Jiang, S. A fast nonlocally centralized sparse representation algorithm for image denoising. Signal Process.
**2016**, 31, 99–112. [Google Scholar] [CrossRef] - Xu, K.; Minonzio, J.G.; Ta, D.; Bo, H.; Wang, W.; Laugier, P. Sparse SVD method for high resolution extraction of the dispersion curves of ultrasonic guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2016**, 63, 1514–1524. [Google Scholar] [CrossRef] [PubMed] - Tang, H.; Chen, J.; Dong, G. Sparse representation based latent components analysis for machinery weak fault detection. Mech. Syst. Signal Process.
**2014**, 46, 373–388. [Google Scholar] [CrossRef] - Wang, H.Q.; Ke, Y.L.; Song, L.Y.; Tang, G.; Chen, P. A sparsity-promoted decomposition for compressed fault diagnosis of roller bearings. Sensors
**2016**, 16, 1524. [Google Scholar] [CrossRef] [PubMed] - Blumeusath, T.; Davies, M.E. Gradient pursuits. IEEE Trans. Signal Process.
**2008**, 56, 2370–2382. [Google Scholar] [CrossRef] - Tropp, J.; Gilbert, A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory
**2007**, 53, 4655–4666. [Google Scholar] [CrossRef] - Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse solution of underdetermined linear equations by stage-wise rthogonal matching pursuit. IEEE Trans. Inf. Theory
**2012**, 58, 1094–1121. [Google Scholar] [CrossRef] - Needell, D.; Vershynin, R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process.
**2010**, 4, 310–316. [Google Scholar] [CrossRef] - Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal.
**2009**, 26, 301–321. [Google Scholar] [CrossRef] - Piro, P.; Sona, D.; Murino, V. Inner product tree for improved orthogonal matching pursuit. In Proceedings of the International Conference on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012; pp. 429–432. [Google Scholar]
- Sun, T.Y.; Liu, C.C.; Tsai, S.J.; Hsieh, S.T.; Li, K.Y. Cluster guide particle swarm optimization (CGPSO) for underdetermined blind source separation with advanced conditions. IEEE Trans. Evolut. Comput.
**2011**, 15, 798–811. [Google Scholar] [CrossRef] - Nasrollahi, A.; Kaveh, A. Engineering design optimization using a hybrid PSO and HS algorithm. Asian J. Civ. Eng.
**2013**, 14, 201–223. [Google Scholar] - Nasrollahi, A.; Kaveh, A. A new hybrid meta-heuristic for structural design: Ranked particles optimization. Struct. Eng. Mech.
**2014**, 52, 405–426. [Google Scholar] - Kaveh, A.; Nasrollahi, A. A new probabilistic particle swarm optimization algorithm for size optimization of spatial truss structures. Int. J. Civ. Eng.
**2014**, 12, 1–13. [Google Scholar] - Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw.
**2017**, 105, 30–47. [Google Scholar] [CrossRef] - Chen, X.; Liu, X.; Dong, S.; Liu, J. Single-channel bearing vibration signal blind source separation method based on morphological filter and optimal matching pursuit (MP) algorithm. J. Vib. Control
**2015**, 21, 1757–1768. [Google Scholar] [CrossRef] - Wang, J.; Wang, L.; Wang, Y. Seismic signal fast decomposition by multichannel matching pursuit with genetic algorithm. In Proceedings of the IEEE International Conference on Signal Processing, Beijing, China, 21–25 October 2012; pp. 1393–1396. [Google Scholar]
- Ventura, R.F.I.; Vandergheynst, P. Matching Pursuit through Genetic Algorithms; LTS-EPFL tech. report 01.02; Signal Processing Laboratories: Lausanne, Switzerland, 2001. [Google Scholar]
- Guldogan, M.B.; Arikan, O. Detection of sparse targets with structurally perturbed echo dictionaries. Digit. Signal Process.
**2013**, 23, 1630–1644. [Google Scholar] [CrossRef] [Green Version] - Li, C.; Su, Y.; Zhang, Y.; Yang, H. Root imaging from ground penetrating radar data by CPSO-OMP compressed sensing. J For. Res.
**2017**, 28, 1–8. [Google Scholar] [CrossRef] - Xu, C.; Zhang, P.; Wang, H.; Li, Y.; Lv, C. Ultrasonic echo wave shape features extraction based on QPSO-matching pursuit for online wear debris discrimination. Mech. Syst. Signal Process.
**2015**, 60, 301–315. [Google Scholar] [CrossRef] - Narayanan, A.; Moore, M. Quantum-inspired genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 61–66. [Google Scholar]
- Yang, J.A.; Li, B.; Zhuang, Z.Q. Multi-universe parallel quantum genetic algorithm its application to blind-source separation. In Proceedings of the IEEE international conference on neural networks and signal processing, Nanjing, China, 14–17 December 2003; pp. 393–398. [Google Scholar]
- Dahi, Z.A.E.M.; Mezioud, C.; Draa, A. A quantum-inspired genetic algorithm for solving the antenna positioning problem. Swarm Evolut. Comput.
**2016**, 31, 24–63. [Google Scholar] [CrossRef] - Xiong, G.; Hu, Y.X.; Tian, L.; Lan, J.L.; Jun-Fei, L.I.; Zhou, Q. A virtual service placement approach based on improved quantum genetic algorithm. Front. Inf. Technol. Electron. Eng.
**2016**, 17, 661–671. [Google Scholar] [CrossRef] - Chen, P.; Yuan, L.; He, Y.; Luo, S. An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis. Neurocomputing
**2016**, 211, 202–211. [Google Scholar] [CrossRef] - Li, P.C.; Song, K.P.; Shang, F.H. Double chains quantum genetic algorithm with application to neuro-fuzzy controller design. Adv. Eng. Softw.
**2011**, 42, 875–886. [Google Scholar] [CrossRef] - Kong, H.; Ni, L.; Shen, Y. Adaptive double chain quantum genetic algorithm for constrained optimization problems. Chin. J. Aeronaut.
**2015**, 28, 214–228. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagrams of the coding space. (

**a**) The traditional coding space; (

**b**) the improved coding space when k = 1 and k = 2.

**Figure 2.**Shaffer’s F6 function. (

**a**) Three-dimensional surface; (

**b**) profile of y=0; (

**c**) profile of x=0.

**Figure 5.**The original frame signal and the reconstruction frame signal using 100 atoms. (

**a**) The original frame signal; (

**b**) the original frequency frame signal; (

**c**) the reconstruction frame signal; (

**d**) the reconstruction frequency frame signal.

**Figure 6.**The residual frame signal and residual frequency after the reconstruction. (

**a**) The residual frame signal; (

**b**) the residual frequency after the reconstruction

**Figure 7.**The original speech signal and the reconstructed speech signal using the IDCQGA-based OMP algorithm. (

**a**) The original speech signal; (

**b**) the reconstructed speech signal.

**Figure 8.**Performance of the OMP based on IDCQGA. (

**a**) The relationship between the fidelity and the iterations; (

**b**) the relationship between the RMSE and the number of atoms.

**Figure 10.**The original signal, the noisy signal and the reconstructed signal of the radar emitter signals. (

**a**) The original signal of CON; (

**b**) the original signal of LFM; (

**c**) the original signal of BPSK; (

**d**) the original signal of BFSK; (

**e**) the noisy signal of CON; (

**f**) the noisy signal of LFM; (

**g**) the noisy signal of BPSK; (

**h**) the noisy signal of BFSK; (

**i**) the reconstructed signal of CON; (

**j**) the reconstructed signal of LFM; (

**k**) the reconstructed signal of BPSK; (

**l**) the reconstructed signal of BFSK.

**Table 1.**Parameters setting of the improved double chains quantum genetic algorithm (IDCQGA) and other algorithms.

Algorithm | Population | Bits of | Encoding | Crossover | Mutation | Initial Rotation | Evolutionary |
---|---|---|---|---|---|---|---|

Size | Gene | Method | Probability | Probability | Angle | Generation | |

PSO | 50 | - | - | - | - | - | 200 |

GA | 50 | 100 | Binary | 0.7 | 0.05 | - | 200 |

QGA | 10 | 100 | qubit | - | - | - | 200 |

DCQGA | 10 | 2 | Double chains | - | 0.05 | $0.01\pi $ | 200 |

IDCQGA | 10 | 2 | High density | - | 0.05 | - | 200 |

Algorithm | x | y | Best Result | Convergent Generations |
---|---|---|---|---|

PSO | 2.7583 | 5.01376 | 0.98327 | 105 |

GA | 8.0283 | 4.81177 | 0.91128 | 9 |

QGA | 2.8985 | 5.5678 | 0.96278 | 1 |

DCQGA | −2.6202 | −1.7276 | 0.99028 | 40 |

IDCQGA | 1.51263 | 1.39374 | 0.99793 | 22 |

Algorithm | Best Result | Worst Result | Average Result | Number of Convergence |
---|---|---|---|---|

PSO | 0.9901 | 0.8925 | 0.9512 | 3 |

GA | 0.9604 | 0.6545 | 0.8535 | 0 |

QGA | 0.9628 | 0.8711 | 0.9402 | 0 |

DCQGA | 0.9903 | 0.8666 | 0.9687 | 6 |

IDCQGA | 1 | 0.9902 | 0.9946 | 10 |

SNR | CON | LFM | BPSK | BFSK | |
---|---|---|---|---|---|

5dB | Noisy signal | 0.6545 | 0.6531 | 0.6572 | 0.6496 |

Reconstructed signal | 0.0530 | 0.0335 | 0.0402 | 0.0545 | |

10dB | Noisy signal | 0.5263 | 0.0372 | 0.0369 | 0.5302 |

Reconstructed signal | 0.0324 | 0.0372 | 0.0369 | 0.0357 | |

15dB | Noisy signal | 0.4179 | 0.3986 | 0.3659 | 0.3982 |

Reconstructed signal | 0.0213 | 0.0257 | 0.0315 | 0.0268 | |

20dB | Noisy signal | 0.3345 | 0.2856 | 0.3549 | 0.3058 |

Reconstructed signal | 0.0197 | 0.0190 | 0.0204 | 0.0173 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Guo, Q.; Ruan, G.; Wan, J.
A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm. *Symmetry* **2017**, *9*, 178.
https://doi.org/10.3390/sym9090178

**AMA Style**

Guo Q, Ruan G, Wan J.
A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm. *Symmetry*. 2017; 9(9):178.
https://doi.org/10.3390/sym9090178

**Chicago/Turabian Style**

Guo, Qiang, Guoqing Ruan, and Jian Wan.
2017. "A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm" *Symmetry* 9, no. 9: 178.
https://doi.org/10.3390/sym9090178