On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions
Abstract
:1. Introduction
2. Preliminaries
- (1)
- u is normal, that is, there exists such that ;
- (2)
- u is upper semicontinuous;
- (3)
- u is convex, that is,
- (4)
- is compact, where denotes the closure of A.
- (1)
- if and only if for each where if and only if and
- (2)
- if and only if and there exists such that or
- (3)
- if either or , then u and v are comparable. Otherwise, u and v are non-comparable.
3. Directional Derivative of the Fuzzy Function
- (1)
- F is convex on D if
- (2)
- F is strictly convex on D if
4. Subdifferential of Fuzzy Function
- (1)
- A fuzzy function with
- (2)
- Define the set
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 1975, 9, 43–80. [Google Scholar] [CrossRef]
- Chang, S.S.L.; Zadeh, L.A. On fuzzy mappings and control. IEEE Trans. Syst. Man Cybern 1972, 2, 30–34. [Google Scholar] [CrossRef]
- Jelušič, P.; Žlender, B. Discrete optimization with fuzzy constraints. Symmetry 2017, 9, 87. [Google Scholar] [CrossRef]
- Qiu, D.; Xing, Y.; Chen, S. Solving multi-Objective Matrix Games with Fuzzy Payoffs through the Lower Limit of the Possibility Degree. Symmetry 2017, 9, 130. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, T.; Ding, Z.; Li, C. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters. Energies 2016, 9, 343. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, A.; Guan, S. Forecasting Based on High-Order Fuzzy-Fluctuation Trends and Particle Swarm Optimization Machine Learning. Symmetry 2017, 9, 124. [Google Scholar] [CrossRef]
- Li, K.; Pan, L.; Xue, W.; Jiang, H.; Mao, H. Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study. Energies 2017, 10, 245. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Wang, J.; Tan, C.; Zhang, L.; Liu, X. Acoustic-Based Cutting Pattern Recognition for Shearer through Fuzzy C-Means and a Hybrid Optimization Algorithm. Appl. Sci. 2016, 6, 294. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, Y.-P.; Ding, T.-S.; Anthony, J. Developing a Cell-Based Spatial Optimization Model for Land-Use Patterns Planning. Sustainability 2014, 6, 9139–9158. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.-J.; Wang, S.; Bi, D.-W. Distributed Particle Swarm Optimization and Simulated Annealing for Energy-efficient Coverage in Wireless Sensor Networks. Sensors 2007, 7, 628–648. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, J.; Pan, P.; Gu, R. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method. Energies 2012, 5, 4683–4696. [Google Scholar] [CrossRef]
- Sato, H. MOEA/D using constant-distance based neighbors designed for many-objective optimization. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 2867–2874. [Google Scholar]
- Feng, S.; Yang, Z.; Huang, M. Hybridizing Adaptive Biogeography-Based Optimization with Differential Evolution for Multi-Objective Optimization Problems. Information 2017, 8, 83. [Google Scholar] [CrossRef]
- Wah, L.; Abdul, A.I.H. Neuro-Genetic Optimization of the Diffuser Elements for Applications in a Valveless Diaphragm Micropumps System. Sensors 2009, 9, 7481–7497. [Google Scholar]
- Precup, R.E.; David, R.C.; Szedlak-Stinean, A.I.; Petriu, E.M.; Dragan, F. An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms 2017, 10, 68. [Google Scholar] [CrossRef]
- Caraveo, C.; Valdez, F.; Castillo, O. A New Meta-Heuristics of Optimization with Dynamic Adaptation of Parameters Using Type-2 Fuzzy Logic for Trajectory Control of a Mobile Robot. Algorithms 2017, 10, 85. [Google Scholar] [CrossRef]
- Peraza, C.; Valdez, F.; Melin, P. Optimization of Intelligent Controllers Using a Type-1 and Interval Type-2 Fuzzy Harmony Search Algorithm. Algorithms 2017, 10, 82. [Google Scholar] [CrossRef]
- Bernal, E.; Castillo, O.; Soria, J.; Valdez, F. Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Using Fuzzy Logic Applied to the Optimization of Mathematical Functions. Algorithms 2017, 10, 18. [Google Scholar] [CrossRef]
- Peraza, C.; Valdez, F.; Garcia, M.; Melin, P.; Castillo, O. A New Fuzzy Harmony Search Algorithm Using Fuzzy Logic for Dynamic Parameter Adaptation. Algorithms 2016, 9, 69. [Google Scholar] [CrossRef]
- Amador-Angulo, L.; Mendoza, O.; Castro, J.R.; Rodrguez-Diaz, A.; Melin, P.; Castillo, O. Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot. Sensors 2016, 16, 1458. [Google Scholar] [CrossRef] [PubMed]
- Ammar, E.E. On convex fuzzy mapping. J. Fuzzy Math. 2006, 14, 501–512. [Google Scholar]
- Ammar, E.E. On fuzzy convexity and parametric fuzzy optimization. Fuzzy Sets Syst. 1992, 49, 135–141. [Google Scholar] [CrossRef]
- Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 2015; Volume 17, pp. 5–101. [Google Scholar]
- Syau, Y.R. Differentiability and convexity of fuzzy mappings. Comput. Math. Appl. 2001, 41, 73–81. [Google Scholar] [CrossRef]
- Wang, G.X.; Wu, C.X. Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming. Fuzzy Sets Syst. 2003, 138, 559–591. [Google Scholar] [CrossRef]
- Yang, X.M.; Teo, K.L.; Yang, X.Q. A characterization of convex function. Appl. Math. Lett. 2000, 13, 27–30. [Google Scholar] [CrossRef]
- Goetschel, R.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A. Differentials of fuzzy functions. J. Math. Anal. Appl. 1983, 91, 552–558. [Google Scholar] [CrossRef]
- Buckley, J.J.; Feuring, T. Introduction to fuzzy partial differential equations. Fuzzy Sets Syst. 1999, 105, 241–248. [Google Scholar] [CrossRef]
- Buckley, J.J.; Eslami, E.; Feuring, T. Fuzzy differential equations. Fuzzy Sets Syst. 2000, 110, 43–54. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
- Panigrahi, M.; Panda, G.; Nanda, S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization. Eur. J. Oper. Res. 2000, 185, 47–62. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.Y.; Zhang, J.K. On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings. Fuzzy Sets Syst. 2015, 280, 107–132. [Google Scholar] [CrossRef]
- Gong, Z.T.; Hai, S.X. Convexity of n-dimensional fuzzy functions and its applications. Fuzzy Sets Syst. 2016, 295, 19–36. [Google Scholar] [CrossRef]
- Lin, G.H. The Basis of Nonlinear Optimization; Science Publishing Company: Beijing, China, 2010. [Google Scholar]
- Osuna-Góomez, R.; Chalco-Cano, Y.; Rufiáan-Lizana, A.; Hernáandez-Jiméenez, B. Necessary and sufficient conditions for fuzzy optimality problem. Fuzzy Sets Syst. 2016, 296, 112–123. [Google Scholar] [CrossRef]
- Guerra, M.L.; Sorini, L.; Stefanini, L. Options priece sensitives through fuzzy numbers. Comput. Math. Appl. 2011, 61, 515–526. [Google Scholar] [CrossRef]
- Buckley, J.J. The fuzzy mathematics of finance. Fuzzy Sets Syst. 1987, 21, 257–273. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xing, Y.; Qiu, D. On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions. Symmetry 2017, 9, 177. https://doi.org/10.3390/sym9090177
Zhang W, Xing Y, Qiu D. On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions. Symmetry. 2017; 9(9):177. https://doi.org/10.3390/sym9090177
Chicago/Turabian StyleZhang, Wei, Yumei Xing, and Dong Qiu. 2017. "On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions" Symmetry 9, no. 9: 177. https://doi.org/10.3390/sym9090177
APA StyleZhang, W., Xing, Y., & Qiu, D. (2017). On Characterizations of Directional Derivatives and Subdifferentials of Fuzzy Functions. Symmetry, 9(9), 177. https://doi.org/10.3390/sym9090177