Multi-objective Fuzzy Bi-matrix Game Model: A Multicriteria Non-Linear Programming Approach
Abstract
:1. Introduction
2. Preliminaries
3. A Multi-objective Bi-matrix Game with Fuzzy Goals
- (1)
- is normal, i.e., there exists an such that ;
- (2)
- is convex, i.e., , for all and ;
- (3)
- is upper semi-continuous;
- (4)
- is compact.
4. Special Case:
5. Example
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Information and control. Fuzzy sets 1965, 8, 338–353. [Google Scholar]
- Bector, C.R.; Chandra, S. Fuzzy Mathematical Programming and Fuzzy Matrix Games; Springer: Berlin, Germany, 2005. [Google Scholar]
- Chen, B.S.; Tseng, C.S.; Uang, H.J. Fuzzy differential games for nonlinear stochastic systems: Suboptimal approach. IEEE Trans. Fuzzy Syst. 2002, 10, 222–233. [Google Scholar] [CrossRef]
- Garagic, D.; Cruz, J.B., Jr. An approach to fuzzy noncooperative nash games. J. Optim. Theory Appl. 2003, 118, 475–491. [Google Scholar] [CrossRef]
- Tan, C.; Jiang, Z.Z.; Chen, X.; Ip, W.H. A Banzhaf function for a fuzzy game. IEEE Trans. Fuzzy Syst. 2014, 22, 1489–1502. [Google Scholar] [CrossRef]
- Sharifian, S.; Chakeri, A.; Sheikholeslam, F. Linguisitc representation of Nash equilibriums in fuzzy games. In Proceedings of the IEEE 2010 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Toronto, ON, Canada, 12–14 July 2010; pp. 1–6. [Google Scholar]
- Chakeri, A.; Sadati, N.; Sharifian, S. Fuzzy Nash equilibrium in fuzzy games using ranking fuzzy numbers. In Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona, Spain, 18–23 July 2010; pp. 1–5. [Google Scholar]
- Chakeri, A.; Sheikholeslam, F. Fuzzy Nash equilibriums in crisp and fuzzy games. IEEE Trans. Fuzzy Syst. 2013, 21, 171–176. [Google Scholar] [CrossRef]
- Chakeri, A.; Sadati, N.; Dumont, G.A. Nash equilibrium strategies in fuzzy games. In Game Theory Relaunched; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Chakeri, A.; Habibi, J.; Heshmat, Y. Fuzzy type-2 Nash equilibrium. In Proceedings of the 2008 International Conference on Computational Intelligence for Modelling Control and Automation, Vienna, Austria, 10–12 December 2008; pp. 398–402. [Google Scholar]
- Chakeri, A.; Dariani, A.N.; Lucas, C. How can fuzzy logic determine game equilibriums better? In Proceedings of the IS’08, 4th International IEEE Conference on Intelligent Systems, Varna, Bulgaria, 6–8 September 2008; pp. 251–256. [Google Scholar]
- Blackwell, D. An analog of the minimax theorem for vector payoffs. Pac. J. Math. 1956, 6, 1–8. [Google Scholar] [CrossRef]
- Roy, S.K.; Biswal, M.P.; Tiwari, R.N. An approach to multi-objective bimatrix games for Nash equilibrium solutions. Ric. Oper. 2001, 30, 56–63. [Google Scholar]
- Roy, S. K. Fuzzy programming approach to two-person multicriteria bimatrix games. J. Fuzzy Math. 2007, 15, 141–153. [Google Scholar]
- Nishizaki, I.; Sakawa, M. Two-person zero-sum games with multiple fuzzy goals. J. Japan Soc. Fuzzy Theory Syst. 1992, 4, 504–511. [Google Scholar]
- Nishizaki, I.; Sakawa, M. Max-min solution for fuzzy multi-objective matrix games. J. Japan Soc. Fuzzy Theory Syst. 1993, 5, 505–515. [Google Scholar]
- Nishizaki, I.; Sakawa, M. Equilibrium solution for multiobjective bimatrix games incorporating fuzzy goals. J. Optim. Theory Appl. 1995, 86, 433–458. [Google Scholar] [CrossRef]
- Chen, Y.W. An alternative approach to the bimatrix non-cooperative game with fuzzy multiple objectives. J. Chin. Inst. Eng. 2002, 19, 9–16. [Google Scholar] [CrossRef]
- Chen, Y.W.; Shieh, H.E. Fuzzy multi-stage de-novo programming problem. Appl. Math. Comput. 2006, 181, 1139–1147. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithm + Data Structure = Evoluation Programs; Springer: Berlin, Germany; New York, NY, USA, 1999. [Google Scholar]
- Angelov, P.P. Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst. 1997, 86, 299–306. [Google Scholar] [CrossRef]
- Precup, R.E.; Preitl, S. Optimisation criteria in development of fuzzy controllers with dynamics. Eng. Appl. Artif. Intel. 2004, 17, 661–674. [Google Scholar] [CrossRef]
- Kiran, M.S.; Findik, O. A directed artificial bee colony algorithm. Appl. Soft Comput. 2015, 26, 454–462. [Google Scholar] [CrossRef]
- Ghosn, S.B.; Drouby, F.; Harmanani, H.M. A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves. Eng. Appl. Artif. Intel. 2016, 14, 130–144. [Google Scholar]
- Roy, S.K.; Das, C.B. Multicriteria entropy bimatrix goal game: A Fuzzy programming approach. J. Uncertain Syst. 2013, 7, 108–117. [Google Scholar]
- Wierzbicki, A.P. Multiple Criteria Solutions in Noncooperative Game-Theory Part III: Theoretical Foundations; Discussion Paper 288; Kyoto Institute of Economic Research: Kyoto, Japan, 1990. [Google Scholar]
- Borm, P.E.M.; Tijs, S.H.J.; van den Aarssen, C.M. Pareto equilibria in multiobjective games. In Methods of Operations Research; Fuchsstein, B., Lengauer, T., Skaka, H.J., Eds.; Verlag Anton Hain Meisenheim GmbH: Frankfurt, Germany, 1988; pp. 303–312. [Google Scholar]
- Qiu, D.; Xing, Y.; Chen, S. Solving multi-objective matrix games with fuzzy payoffs through the lower limit of the possibility degree. Symmetry 2017, 9, 130. [Google Scholar] [CrossRef]
- Nishizaki, I.; Sakawa, M. Fuzzy and Multiobjective Games for Conflict Resolution; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Mangasarian, O.L.; Stone, H. Two-person non-zero-sum games and quadratic programming. J. Math. Anal. Appl. 1964, 9, 348–355. [Google Scholar] [CrossRef]
- Nishizaki, I.; Sakawa, M. Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals. Fuzzy Sets Syst. 2000, 111, 99–116. [Google Scholar] [CrossRef]
- Fernandez, F.R.; Puerto, J. Vector linear programming in zero-sum multicriteria matrix games. J. Optim. Theory Appl. 1996, 89, 115–127. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems-Theory and Application; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 3rd ed.; Kluwer Academic Publishers: Nowell, MA, USA, 1996. [Google Scholar]
- Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55. [Google Scholar] [CrossRef]
- Pal, B.B.; Moitra, B.N. A goal programming procedure for solving problems with multiple fuzzy goals using dynamic programming. Eur. J. Oper. Res. 2003, 144, 480–491. [Google Scholar] [CrossRef]
- Das, C.B.; Roy, S.K. Fuzzy based GA to multi-objective entropy bimatrix game. Opsearch 2013, 50, 125–140. [Google Scholar] [CrossRef]
Strategies | |||||||
---|---|---|---|---|---|---|---|
1 | 0.2285 | 0.1 | 0.2 | 0.7 | 0.4 | 0.2 | 0.4 |
2 | 0.2685 | 0.2 | 0.3 | 0.5 | 0.7 | 0.1 | 0.2 |
3 | 0.2720 | 0.6 | 0.2 | 0.2 | 0.2 | 0.5 | 0.3 |
4 | 0.2885 | 0.1 | 0.1 | 0.8 | 0.6 | 0.3 | 0.1 |
5 | 0.2971 | 0.5 | 0.1 | 0.4 | 0.5 | 0.2 | 0.3 |
6 | 0.3000 | 0.4 | 0.1 | 0.5 | 0.3 | 0.4 | 0.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xing, Y.; Qiu, D. Multi-objective Fuzzy Bi-matrix Game Model: A Multicriteria Non-Linear Programming Approach. Symmetry 2017, 9, 159. https://doi.org/10.3390/sym9080159
Zhang W, Xing Y, Qiu D. Multi-objective Fuzzy Bi-matrix Game Model: A Multicriteria Non-Linear Programming Approach. Symmetry. 2017; 9(8):159. https://doi.org/10.3390/sym9080159
Chicago/Turabian StyleZhang, Wei, Yumei Xing, and Dong Qiu. 2017. "Multi-objective Fuzzy Bi-matrix Game Model: A Multicriteria Non-Linear Programming Approach" Symmetry 9, no. 8: 159. https://doi.org/10.3390/sym9080159