Symmetry Analysis and Conservation Laws of the Zoomeron Equation
Abstract
:1. Introduction
2. Symmetry Reductions and Exact Solutions of (1) Based on Optimal System
2.1. Lie Point Symmetries of (1)
2.2. Optimal System of One-Dimensional Subalgebras
2.3. Symmetry Reductions
2.4. Group-Invariant Solutions
3. Conservation Laws of (1)
4. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wazwaz, M. The Tanh and Sine-Cosine Method for Compact and Noncompact Solutions of Nonlinear Klein Gordon Equation. Appl. Math. Comput. 2005, 167, 1179–1195. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for the Zakharo-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1039–1047. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Soliton, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ma, W.X.; Huang, T.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its applications. Phys. Scr. 2010, 82, 065003. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef]
- Bluman, W.; Cole, J.D. The general similarity solutions of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Fokas, A.S.; Liu, Q.M. Generalized conditional symmetries and exact solutions of nonintegrable equations. Theor. Math. Phys. 1994, 99, 263–277. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: Berlin, Germany, 1993. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Abazari, R. The solitary wave solutions of Zoomeron equation. Appl. Math. Sci. 2011, 5, 2943–2949. [Google Scholar]
- Khan, K.; Akbar, M.A.; Salam, M.A.; Islam, M.H. A note on enhanced (G′/G)-expansion method in nonlinear physics. Ain Shams Eng. 2014, 5, 877–884. [Google Scholar] [CrossRef]
- Alquran, M.; Al-Khaled, K. Mathematical methods for a reliable treatment of the (2 + 1)-dimensional Zoomeron equation. Math. Sci. 2012, 6, 1–5. [Google Scholar] [CrossRef]
- Irshad, A.; Mohyud-Din, S.T. Solitary wave solutions for Zoomeron equation. Walailak J. Sci. Technol. 2013, 10, 201–208. [Google Scholar]
- Qawasmeh, A. Soliton solutions of (2 + 1)-Zoomeron equation and Duffing equation and SRLW equation. J. Math. Comput. Sci. 2013, 3, 1475–1480. [Google Scholar]
- Gao, H. Symbolic computation and new exact travelling solutions for the (2 + 1)-dimensional Zoomeron equation. Int. J. Mod. Nonlinear Theory Appl. 2014, 3, 23–28. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Traveling wave solutions of the (2 + 1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method. Ain Shams Eng. J. 2014, 5, 247–256. [Google Scholar] [CrossRef]
- Morris, R.M.; Leach, P.G.L. Symmetry reductions and solutions to the Zoomeron equation. Phys. Scr. 2015, 90, 015202. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform Associated with the Matrix Schrödinger Equation. In Solitons; Bullough, R.K., Caudrey, P.J., Eds.; Springer: Berlin, Germany, 1980; pp. 301–324. [Google Scholar]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons II: Tools to Solve and Investigate Nonlinear Evolution Equations; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Calogero, F.; Degasperis, A. New integrable PDEs of boomeronic type. J. Phys. A Math. Gen. 2006, 39, 8349–8376. [Google Scholar] [CrossRef]
- Patera, J.; Winternitz, P.; Zassenhaus, H. Continuous subgroups of the fundamental groups of physics: I. General method and the Poincare group. J. Math. Phys. 1975, 16, 1597–1615. [Google Scholar] [CrossRef]
- Patera, J.; Winternitz, P.; Zassenhaus, H. Continuous subgroups of the fundamental groups of physics: II. The similitude group. J. Math. Phys. 1975, 16, 1616–1624. [Google Scholar] [CrossRef]
- Boyer, C.P.; Sharp, R.T.; Winternitz, P. Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 1976, 17, 1439–1451. [Google Scholar] [CrossRef]
- Cherniha, R. Galilei-invariant non-linear PDEs and their exact solutions. J. Nonlinear Math. Phys. 1995, 2, 374–383. [Google Scholar] [CrossRef]
- Cherniha, R. Lie Symmetries of nonlinear two-dimensional reaction-diffusion systems. Rept. Math. Phys. 2000, 46, 63–76. [Google Scholar] [CrossRef]
- Fedorchuk, V.; Fedorchuk, V. On Classification of symmetry reductions for the Eikonal equation. Symmetry 2016, 8, 51. [Google Scholar] [CrossRef]
- Fushchich, W.; Cherniga, R. Galilei-invariant nonlinear equations of Schrödinger-type and their exact solutions I. Ukr. Math. J. 1989, 41, 1161–1167. [Google Scholar] [CrossRef]
- Cherniha, R. Exact Solutions of the Multidimensional Schrödinger Equation with Critical Nonlinearity. In Group and Analytic Methods in Mathematical Physics, Proceedings of Institute of Mathematics; NAS of Ukraine: Kiev, Ukraine, 2001; Volume 36, pp. 304–315. [Google Scholar]
- Cherniha, R.; Kovalenko, S. Lie symmetries and reductions of multidimensional boundary value problems of the Stefan type. J. Phys. A Math. Theor. 2011, 44, 485202. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G. Direct construction method for conservation laws for partial differential equations Part II: General treatment. Eur. J. Appl. Math. 2002, 13, 567–585. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Garrido, T.M.; de la Rosa, R. Conservation laws and exact solutions of a Generalized Benjamin–Bona–Mahony–Burgers equation. Chaos Solitons Fractals 2016, 89, 578–583. [Google Scholar] [CrossRef]
- Weisstein, E.W. “Erfi.” From MathWorld–A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/Erfi.html (accessed on 27 October 2016).
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; Dover Publications: New York, NY, USA, 1972. [Google Scholar]
- Anco, S.C. Generalization of Noether’s Theorem in Modern Form to Non-Variational Partial Differential Equations. In Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science; Springer: New York, NY, USA, 2016. [Google Scholar]
0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | ||
0 | 0 | 0 | |||
0 | 0 | ||||
0 | 0 | 0 | 0 |
Ad | ||||||
---|---|---|---|---|---|---|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motsepa, T.; Khalique, C.M.; Gandarias, M.L. Symmetry Analysis and Conservation Laws of the Zoomeron Equation. Symmetry 2017, 9, 27. https://doi.org/10.3390/sym9020027
Motsepa T, Khalique CM, Gandarias ML. Symmetry Analysis and Conservation Laws of the Zoomeron Equation. Symmetry. 2017; 9(2):27. https://doi.org/10.3390/sym9020027
Chicago/Turabian StyleMotsepa, Tanki, Chaudry Masood Khalique, and Maria Luz Gandarias. 2017. "Symmetry Analysis and Conservation Laws of the Zoomeron Equation" Symmetry 9, no. 2: 27. https://doi.org/10.3390/sym9020027
APA StyleMotsepa, T., Khalique, C. M., & Gandarias, M. L. (2017). Symmetry Analysis and Conservation Laws of the Zoomeron Equation. Symmetry, 9(2), 27. https://doi.org/10.3390/sym9020027