Evaporation and Antievaporation Instabilities
Abstract
:1. Introduction
2. What Is (Anti)evaporation?
3. (Anti)evaporation in Quantum Dilaton-Gravity
4. (Anti)evaporation in -Gravity
4.1. The Case of the Nariai Black Hole in -Gravity
4.2. Extremal Reissner–Nordström Black Holes
5. (Anti)evaporation in -Gravity
5.1. The Case of Nariai Black Hole in Diagonal Tetrads Gauge
5.2. Classical Evaporation and Antievaporation in Non-Diagonal Tetrads
6. (Anti)evaporation in String-Inspired Black Holes
7. Evaporation, Antievaporation, and Hawking’s Radiation
7.1. Path Integral Approach in -Gravity
7.2. Bekenstein–Hawking Radiation is Turned Off
7.3. A New Radiation in Non-Diagonal Evaporating Solutions
8. Brane-Worlds Instabilities
Brane Dynamics in the Bulk
9. Discussions and Open Problems
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Nariai Metric
Appendix B. Extremal Reissner–Nördstrom Metric
Appendix C. Components of the Ricci Tensors and Ricci Scalar of 4D Nariai Black Holes in f(R)-Gravity
Appendix D. Components of the Ricci Tensors and Ricci Scalar in Extremal Reissner-Nördstrom BH
Appendix E. Components of the Ricci Tensors and Ricci Scalar in Five-Dimensional Nariai Black Holes
References
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2006, 4, 115–145. [Google Scholar] [CrossRef]
- Njiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. arXiv, 2017; arXiv:1705.11098. [Google Scholar]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79. [Google Scholar] [CrossRef] [PubMed]
- Chamseddine, A.H.; Mukhanov, V.; Vikman, A. Cosmology with Mimetic Matter. J. Cosmol. Astropart. Phys. 2014, 1406. [Google Scholar] [CrossRef]
- Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R. Mimetic gravity: A review of recent developments and applications to cosmology and astrophysics. Adv. High Energy Phys. 2017, 2017. [Google Scholar] [CrossRef]
- Ijjas, A.; Ripley, J.; Steinhardt, P.J. NEC violation in mimetic cosmology revisited. Phys. Lett. B 2016, 760, 132–138. [Google Scholar] [CrossRef]
- Rabochaya, Y.; Zerbini, S. A note on a mimetic scalar-tensor cosmological model. Eur. Phys. J. C 2016, 76, 85. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Mimetic F(R) gravity: Inflation, dark energy and bounce. Mod. Phys. Lett. A 2014, 29. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R.; Kaloper, N. Infinitely large new dimensions. Phys. Rev. Lett. 2000, 84, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Dvali, G.R.; Gabadadze, G.; Porrati, M. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 2000, 485, 208–214. [Google Scholar] [CrossRef]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Relativ. 2010, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Brax, P.; van de Bruck, C. Cosmology and brane worlds: A Review. Class. Quantum Gravity 2003, 20, R201. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. (Anti)evaporation of Schwarzschild-de Sitter black holes. Phys. Rev. D 1998, 57, 2436–2442. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes. Phys. Rev. D 1999, 59. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Effective action for conformal scalars and anti-evaporation of black holes. Int. J. Mod. Phys. A 1999, 14, 1293–1304. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Possible quantum instability of primordial black holes. Phys. Rev. D 1999, 59. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F(d+1)(R) gravity. Class. Quantum Gravity 2013, 30, 125003. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Instabilities and anti-evaporation of Reissner-Nordström black holes in modified F(d+1)(R) gravity. Phys. Lett. B 2014, 735, 376–382. [Google Scholar] [CrossRef]
- Sebastiani, L.; Momeni, D.; Myrzakulov, R.; Odintsov, S.D. Instabilities and (anti)-evaporation of Schwarzschild—De Sitter black holes in modified gravity. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Momeni, D.; Myrzakulov, R.; Rodrigues, M.E. Evaporation phenomena in f(T) gravity. Can. J. Phys. 2015, 93, 377–383. [Google Scholar] [CrossRef]
- Matsumoto, J.; Odintsov, S.D.; Sushkov, S.V. Cosmological perturbations in a mimetic matter model. Phys. Rev. D 2015, 91. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D.; Oikonomou, V.K. Modified Gauss—Bonnet gravity with the Lagrange multiplier constraint as mimetic theory. Class. Quantum Gravity 2015, 32. [Google Scholar] [CrossRef]
- Oikonomou, V.K. A note on Schwarzschild-de Sitter black holes in mimetic F(d+1)(R) gravity. Int. J. Mod. Phys. D 2016, 25. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Reissner-Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity. Universe 2016, 2, 10. [Google Scholar] [CrossRef]
- Katsuragawa, T.; Nojiri, S. Stability and antievaporation of the Schwarzschild?de Sitter black holes in bigravity. Phys. Rev. D 2015, 91. [Google Scholar] [CrossRef]
- Addazi, A. (Anti)evaporation of Dyonic Black Holes in string-inspired dilaton f(R)-gravity. Int. J. Mod. Phys. A 2017, 32. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Spherically symmetric brane spacetime with bulk f() gravity. Eur. Phys. J. C 2015, 75, 11. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Effective gravitational field equations on m-brane embedded in n-dimensional bulk of Einstein and f() gravity. Eur. Phys. J. C 2015, 75, 538. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Solving higher curvature gravity theories. Eur. Phys. J. C 2016, 76, 552. [Google Scholar] [CrossRef]
- Addazi, A.; Nojiri, S.; Odintsov, S. Evaporation and antievaporation instability of a Schwarzschild-de Sitter braneworld: The case of five-dimensional F(R) gravity. Phys. Rev. D 2017, 95. [Google Scholar] [CrossRef]
- Singh, D.V.; Singh, N.K. Anti-Evaporation of Bardeen de-Sitter Black Holes. arXiv, 2017; arXiv:1704.01831. [Google Scholar]
- Addazi, A.; Capozziello, S. The fate of Schwarzschild-de Sitter Black Holes in F(R) gravity. Mod. Phys. Lett. A 2016, 31. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Astrophysical black holes may radiate, but they do not evaporate. arXiv, 2013; arXiv:1310.4771. [Google Scholar]
- Firouzjaee, J.T.; Ellis, G.F.R. Cosmic Matter Flux May Turn Hawking Radiation off. Gen. Relativ. Gravit. 2015, 47, 6. [Google Scholar] [CrossRef]
- Firouzjaee, J.T.; Ellis, G.F.R. Particle creation from the quantum stress tensor. Phys. Rev. D 2015, 91. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and Thermodynamics. Phys. Rev. D 1976, 13. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Addazi, A. Evaporation/Antievaporation and energy conditions in alternative gravity. arXiv, 2017; arXiv:1707.05724. [Google Scholar]
- Christensen, S.M.; Fulling, S.A. Trace anomalies and the Hawking effect. Phys. Rev. D 1977, 15, 2088–2104. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. Trace anomaly of dilaton coupled scalars in two-dimensions. Phys. Rev. D 1997, 56, 7788–7791. [Google Scholar] [CrossRef]
- Hayward, J.D. Entropy in the RST model. Phys. Rev. D 1995, 52. [Google Scholar] [CrossRef]
- Gonzalez, P.A.; Saridakis, E.N.; Vasquez, Y. Circularly symmetric solutions in three-dimensional Teleparallel, f(T) and Maxwell-f(T) gravity. J. High Energy Phys. 2012, 2012. [Google Scholar] [CrossRef]
- Capozziello, S.; Gonzalez, P.A.; Saridakis, E.N.; Vasquez, Y. Exact charged black-hole solutions in D-dimensional f(T) gravity: Torsion vs. curvature analysis. J. High Energy Phys. 2013, 1302. [Google Scholar] [CrossRef]
- Iorio, L.; Saridakis, E.N. Solar system constraints on f(T) gravity. Mon. Not. R. Astron. Soc. 2012, 427, 1555–1561. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quantum Gravity 2016, 33. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.D.; Ortin, T.; Peet, A.W.; Van Proeyen, A. Supersymmetry as a cosmic censor. Phys. Rev. D 1992, 46, 5278–5302. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; Samsonyan, M. Notes on unoriented D-brane instantons. Int. J. Mod. Phys. A 2009, 24, 5737–5763. [Google Scholar] [CrossRef]
- Addazi, A. Direct generation of a Majorana mass for the Neutron from Exotic Instantons. Phys. Lett. B 2016, 757, 462–467. [Google Scholar] [CrossRef]
- Addazi, A.; Bianchi, M.; Ricciardi, G. Exotic see-saw mechanism for neutrinos and leptogenesis in a Pati-Salam model. J. High Energy Phys. 2016, 1602. [Google Scholar] [CrossRef]
- Addazi, A.; Khlopov, M. Way-out to the gravitino problem in intersecting D-brane Pati-Salam models. Mod. Phys. Lett. A 2016, 31, 1650111. [Google Scholar] [CrossRef]
- Addazi, A.; Valle, J.W.F.; Vaquera-Araujo, C.A. String completion of an SU(3)c⊗SU(3)L⊗U(1)X electroweak model. Phys. Lett. B 2016, 759, 471–478. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Mathur, S.D. The Information paradox: A Pedagogical introduction. Class. Quantum Gravity 2009, 26. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Information conservation is fundamental: Recovering the lost information in Hawking radiation. Int. J. Mod. Phys. D 2013, 22. [Google Scholar] [CrossRef]
- Corda, C. Time dependent Schrödinger equation for black hole evaporation: no information loss. Ann. Phys. 2015, 353, 71–82. [Google Scholar] [CrossRef]
- Ketov, S.V.; Terada, T. Old-minimal supergravity models of inflation. J. High Energy Phys. 2013, 1312, 40. [Google Scholar] [CrossRef]
- Ferrara, S.; Kehagias, A.; Porrati, M. Vacuum structure in a chiral R + Rn modification of pure supergravity. Phys. Lett. B 2013, 727, 314–318. [Google Scholar] [CrossRef]
- Addazi, A.; Capozziello, S. External stability for Spherically Symmetric Solutions in Lorentz Breaking Massive Gravity. Int. J. Theor. Phys. 2015, 54, 1818–1829. [Google Scholar] [CrossRef]
- Dyer, E.; Hinterbichler, K. Boundary Terms, Variational Principles and Higher Derivative Modified Gravity. Phys. Rev. D 2009, 79. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E. Black hole entropy in modified gravity models. Phys. Rev. D 2008, 77. [Google Scholar] [CrossRef]
- Albareti, F.D.; Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Dobado, A. On the non-attractive character of gravity in f(R) theories. J. Cosmol. Astropart. Phys. 2013, 1307. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Lobo, F.S.N.; Capozziello, S. Extended Theories of Gravity with Generalized Energy Conditions. J. Phys. Conf. Ser. 2015, 600. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D 1977, 15. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Is brane cosmology predictable? Gen. Relativ. Gravit. 2005, 37, 1419–1425. [Google Scholar] [CrossRef]
- Deruelle, N.; Sasaki, M.; Sendouda, Y. Junction conditions in F(R) theories of gravity. Prog. Theor. Phys. 2008, 119, 237–251. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2013, 1302, 62. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Pirandola, S.; yczkowski, K. Better Late than Never: Information Retrieval from Black Holes. Phys. Rev. Lett. 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Regular Multi-Horizon Black Holes in Modified Gravity with Non-Linear Electrodynamics. arXiv, 2017; arXiv:1708.05226. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118. [Google Scholar] [CrossRef] [PubMed]
- Corda, C. Interferometric detection of gravitational waves: The definitive test for General Relativity. Int. J. Mod. Phys. D 2009, 18, 2275–2282. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addazi, A.; Marciano, A. Evaporation and Antievaporation Instabilities. Symmetry 2017, 9, 249. https://doi.org/10.3390/sym9110249
Addazi A, Marciano A. Evaporation and Antievaporation Instabilities. Symmetry. 2017; 9(11):249. https://doi.org/10.3390/sym9110249
Chicago/Turabian StyleAddazi, Andrea, and Antonino Marciano. 2017. "Evaporation and Antievaporation Instabilities" Symmetry 9, no. 11: 249. https://doi.org/10.3390/sym9110249
APA StyleAddazi, A., & Marciano, A. (2017). Evaporation and Antievaporation Instabilities. Symmetry, 9(11), 249. https://doi.org/10.3390/sym9110249