Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities
Abstract
:1. Introduction
2. Nonclassical Symmetries
2.1. Singular Reduction Operators
2.2. Regular Reduction Operators
3. Exact Solutions
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Roy-Chowdhury, A.K. Painleve Analysis and Its Applications; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear Schrodinger equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef] [PubMed]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equations. Nonlinearity 2016, 29, 915–946. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Ames, W.F. Nonlinear Partial Differential Equations in Engineering; Academic: New York, NY, USA, 1972; Volume II, pp. 50–52. [Google Scholar]
- Ames, W.F.; Adams, E.; Lohner, R.G. Group properties of utt = [f(u)ux]x. Int. J. Non-Linear Mech. 1981, 16, 439–447. [Google Scholar] [CrossRef]
- Ibragimov, N.H. (Ed.) Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws; CRC Press: Boca Raton, FL, USA, 1994; Volume 1.
- Arrigo, D.J. Group properties of uxx − uyy = f(u). Int. J. Non-Linear Mech. 1991, 26, 619–629. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. J. Math. Anal. Appl. 2007, 333, 93–111. [Google Scholar] [CrossRef]
- Bluman, G.W.; Temuerchaolu; Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 2005, 46, 023505. [Google Scholar] [CrossRef]
- Chikwendu, S.C. Non-linear wave propagation solutions by Fourier transform perturbation. Int. J. Non-Linear Mech. 1981, 16, 117–128. [Google Scholar] [CrossRef]
- Donato, A. Similarity analysis and nonlinear wave propagation. Int. J. Non-Linear Mech. 1987, 22, 307–314. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Torrisi, M.; Valenti, A. Symmetry classification and optimal systems of a non-linear wave equation. Int. J. Non-Linear Mech. 2004, 39, 389–398. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 2007, 48, 073507. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 2010, 366, 460–472. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group-theoretical analysis of variable coefficient nonlinear telegraph equations. Acta Appl. Math. 2012, 117, 135–183. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Torrisi, M.; Valenti, A. Preliminary group classification of equations vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 1991, 32, 2988–2995. [Google Scholar] [CrossRef]
- Oron, A.; Rosenau, P. Some symmetries of the nonlinear heat and wave equations. Phys. Lett. A 1986, 118, 172–176. [Google Scholar] [CrossRef]
- Pucci, E. Group analysis of the equation utt + λuxx = g(u, ux). Riv. Mat. Univ. Parma 1987, 12, 71–87. [Google Scholar]
- Pucci, E.; Salvatori, M.C. Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech. 1986, 21, 147–155. [Google Scholar] [CrossRef]
- Torrisi, M.; Valenti, A. Group properties and invariant solutions for infinitesimal transformations of a nonlinear wave equation. Int. J. Non-Linear Mech. 1985, 20, 135–144. [Google Scholar] [CrossRef]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Lie symmetry classification and equivalence transformation of variable coefficient nonlinear wave equations with power nonlinearities. Chin. J. Contemp. Math. 2012, 33, 205–214. [Google Scholar]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Conservation law classification of variable coefficient nonlinear wave equation with power Nonlinearity. Chin. Phys. B 2011, 20, 070202. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations. J. Differ. Equ. 2016, 260, 2354–2382. [Google Scholar] [CrossRef]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Levi, D.; Winternitz, P. Non-classical symmetry reduction: Example of the Boussinesq equation. J. Phys. A Math. Gen. 1989, 22, 2915–2924. [Google Scholar] [CrossRef]
- Arrigo, D.J.; Broadbridge, P.; Hill, J.M. Nonclassical symmetry solutions and the methods of Bluman-Cole and Clarkson-Kruskal. J. Math. Phys. 1993, 34, 4692–4703. [Google Scholar] [CrossRef]
- Zhdanov, R.Z.; Tsyfra, I.M.; Popovych, R.O. A precise definition of reduction of partial differential equations. J. Math. Anal. Appl. 1999, 238, 101–123. [Google Scholar] [CrossRef]
- Olver, P.J.; Rosenau, P. Group-invariant solutions of differential equations. SIAM J. Appl. Math. 1987, 47, 263–278. [Google Scholar] [CrossRef]
- Fushchych, W.I.; Shtelen, W.M.; Serov, N.I. Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Fushchych, W.I.; Shtelen, W.M.; Serov, M.I.; Popovych, R.O. Q-conditional symmetry of the linear heat equation. Proc. Acad. Sci. Ukraine 1992, 12, 28–33. [Google Scholar]
- Fushchych, W.I.; Zhdanov, R.Z. Conditional symmetry and reduction of partial differential equations. Ukr. Math. J. 1992, 44, 970–982. [Google Scholar] [CrossRef]
- Cherniha, R. Conditional symmetries for systems of PDEs: New definitions and their application for reaction-diffusion systems. J. Phys. A Math. Theor. 2010, 43, 405207. [Google Scholar] [CrossRef]
- Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion systems with power diffusivities. J. Phys. A Math. Theor. 2008, 41, 185208. [Google Scholar] [CrossRef]
- Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities. J. Math. Anal. Appl. 2013, 403, 23–37. [Google Scholar] [CrossRef]
- Cherniha, R. New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection equations arising in mathematical biology. J. Math. Anal. Appl. 2007, 326, 783–799. [Google Scholar] [CrossRef]
- Kunzinger, M.; Popovych, R.O. Is a nonclassical symmetry a symmetry. In Proceedings of the 4th Workshop “Group Analysis of Differential Equations and Integrability”, Protaras, Cyprus, 26–30 October 2008.
- Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. Lond. A 1994, 444, 509–523. [Google Scholar] [CrossRef]
- Olver, P.J.; Rosenau, P. The construction of special solutions to partial differential equations. Phys. Lett. A 1986, 114, 107–112. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl. 1992, 163, 588–598. [Google Scholar] [CrossRef]
- Boyko, V.M.; Kunzinger, M.; Popovych, R.O. Singular reduction modules of differential equations. J. Math. Phys. 2016, 57, 101503. [Google Scholar] [CrossRef]
- Kunzinger, M.; Popovych, R.O. Singular reduction operators in two dimensions. J. Phys. A 2008, 41, 505201. [Google Scholar] [CrossRef]
- Fushchich, V.I.; Serov, N.I.; Repeta, V.K. Conditional symmetry, reduction and exact solutions of the nonlinear wave equation. Dokl. Akad. Nauk Ukr. SSR 1991, 161, 29–34. (In Russian) [Google Scholar]
N | n | m | Regular Reduction Operator Q | ||
---|---|---|---|---|---|
1 | |||||
2 | 1 | 1 | 1 | ||
3 | 1 | 2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Zhu, Y.; Yang, Q. Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities. Symmetry 2017, 9, 3. https://doi.org/10.3390/sym9010003
Huang D, Zhu Y, Yang Q. Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities. Symmetry. 2017; 9(1):3. https://doi.org/10.3390/sym9010003
Chicago/Turabian StyleHuang, Dingjiang, Yan Zhu, and Qinmin Yang. 2017. "Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities" Symmetry 9, no. 1: 3. https://doi.org/10.3390/sym9010003
APA StyleHuang, D., Zhu, Y., & Yang, Q. (2017). Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities. Symmetry, 9(1), 3. https://doi.org/10.3390/sym9010003