Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
Abstract
:1. Introduction
2. Vessiot–Guldberg–Lie Algebras with for Scalar SODE Systems
2.1.
2.2.
- :
- :
- :
- :
- :
2.3. Second-Order ODEs with Three-Dimensional Vessiot–Guldberg–Lie Algebra
- Commutators:Realization:Second-order differential equation:Constraints:
- Commutators:Realization:Second-order differential equation:Constraints:
- Commutators:Realization:Second-order differential equation:Constraints:
- Commutators:Realization:Second-order differential equation:
- Commutators:Realization:Second-order differential equation:Constraints:
- Commutators:Realization:Second-order differential equation:Constraints:
2.4. Examples
- The well-known Milne–Pinney equation:
3. SODE Lie Systems in the Plane
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lie, S. Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen; B. G. Teubner: Leipzig, Germany, 1891. [Google Scholar]
- Cariñena, J.F.; de Lucas, J. Lie systems: Theory, generalisations and applications. Dissertationes Math. 2011, 479, 1–162. [Google Scholar] [CrossRef]
- Ibragimov, N.K. Integration of systems of first-order equations admitting a nonlinear superposition. J. Nonl. Math. Phys. 2009, 16, 137–147. [Google Scholar] [CrossRef]
- Ballesteros, A.; Blasco, A.; Herranz, F.J.; de Lucas, J.; Sardón, C. Lie-Hamilton systems on the plane: Theory, classification and applications. J. Diff. Equations 2015, 258, 2873–2907. [Google Scholar] [CrossRef]
- Cariñena, J.F.; de Lucas, J.; Rañada, M.F. Recent applications of the theory of Lie systems in Ermakov systems. Symmetry Integrability Geom. Methods Appl. 2008, 4. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Grabowski, J.; de Lucas, J. Superposition rules for higher-order systems and their applications. J. Phys. A: Math. Theor. 2012, 45. [Google Scholar] [CrossRef]
- González-López, A.; Kamran, N.; Olver, P.J. Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. 1992, 64, 339–368. [Google Scholar] [CrossRef]
- Shnider, S.; Winternitz, P. Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 1984, 25, 3155–3165. [Google Scholar] [CrossRef]
- Ibragimov, N.K.; Gainetdinova, A.A. Three-dimensional dynamical systems admitting nonlinear superposition with three-dimensional Vessiot-Guldberg-Lie algebras. Appl. Math. Lett. 2016, 52, 126–131. [Google Scholar] [CrossRef]
- Cariñena, J.F.; de Lucas, J. Superposition rules and second-order Riccati equations. J. Geom. Mech. 2011, 3, 1–22. [Google Scholar]
- Ibragimov, N.Kh. Group analysis of ordinary differential equations and the invariance principle in mathematical physics. Uspekhi Mat. Nauk 1992, 47, 83–144. [Google Scholar]
- Ovsyannikov, L.V. Lectures on the Theory of Group Properties of Differential Equations; Ibragimov, N.K., Ed.; World Scientific: Singapore, 2013. [Google Scholar]
- Wei, J.; Norman, E. Lie algebraic solution of linear differential equations. J. Math. Phys. 1963, 4, 575–581. [Google Scholar] [CrossRef]
- Campoamor-Stursberg, R. Reduction of the symmetry algebra of ODEs by means of additional constraints associated to a subalgebra. Cubo Math. J. 2006, 8, 25–34. [Google Scholar]
- Šnobl, L.; Winternitz, P. Classification and Identification of Lie Algebras; American Mathematical Society: Providence, RI, USA, 2014. [Google Scholar]
- Lahno, V.I.; Spichak, S.V.; Stognii’, V.I. Symmetry Analysis of Evolution Type Equations; Institute of Computer Science: Moscow-Izhevsk, UK, 2004. (In Russian) [Google Scholar]
- Perelomov, A.M. Integrable Systems of Classical Mechanics and Lie Algebras; Birkhäuser Verlag: Basel, Switzerland, 1990. [Google Scholar]
- Subag, E.M.; Baruch, E.M.; Birman, J.L.; Mann, A. Strong contractions of the representations of the three dimensional Lie algebras. J. Phys. A: Math. Theor. 2012, 45. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campoamor-Stursberg, R. Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations. Symmetry 2016, 8, 15. https://doi.org/10.3390/sym8030015
Campoamor-Stursberg R. Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations. Symmetry. 2016; 8(3):15. https://doi.org/10.3390/sym8030015
Chicago/Turabian StyleCampoamor-Stursberg, Rutwig. 2016. "Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations" Symmetry 8, no. 3: 15. https://doi.org/10.3390/sym8030015
APA StyleCampoamor-Stursberg, R. (2016). Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations. Symmetry, 8(3), 15. https://doi.org/10.3390/sym8030015