# Linear Weingarten Helicoidal Surfaces in Isotropic Space

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

## 3. Main Results

**Theorem**

**1.**

**Corollary**

**1.**

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Weingarten, J. Über eine Klasse auf einander abwickelbarer Flächen. J. Reine Angew. Math.
**1861**, 59, 382–393. [Google Scholar] [CrossRef] - Asperti, A.C.; Chaves, R.M.B.; Valério, B.C. Ruled Weingarten hypersurfaces in the Lorentz-Minkowski space and in de Sitter space. J. Geom. Phys.
**2010**, 60, 553–561. [Google Scholar] [CrossRef] - Aydin, M.E.; Öğrenmiş, A.O. Linear Weingarten Factorable Surfaces in Isotropic Spaces; Cornell University Library: Ithaca, NY, USA, 2016. [Google Scholar]
- Barros, A.; Silva, J.; Sousa, P. Rotational linear Weingarten surfaces into the Euclidean sphere. Isr. J. Math.
**2012**, 192, 819–830. [Google Scholar] [CrossRef] - Dias, D.G.; Corro, A.M.V. Classes of generalized Weingarten surfaces in the Euclidean 3-space. Adv. Geom.
**2016**, 16, 45–55. [Google Scholar] [CrossRef] - Erjavec, Z. On a certain class of Weingarten surfaces in Sol space. Int. J. Appl. Math.
**2015**, 28, 507–514. [Google Scholar] [CrossRef] - Gaĺvez, J.A.; Martińez, A.; Milań, F. Linear Weingarten surfaces in R
^{3}. Mon. Math.**2003**, 138, 133–144. [Google Scholar] [CrossRef] - Ganchev, G.; Mihova, V. On the invariant theory of Weingarten surfaces in Euclidean space. J. Phys. A
**2010**, 43, 405210–405236. [Google Scholar] [CrossRef] - Ji, F.; Hou, Z.H. Helicoidal surfaces under the cubic screw motion in Minkowski 3-space. J. Math. Anal. Appl.
**2006**, 318, 634–647. [Google Scholar] [CrossRef] - Kim, M.H.; Yoon, D.W. Weingarten quadric surfaces in a Euclidean 3-space. Turk. J. Math.
**2011**, 35, 479–485. [Google Scholar] - Kühnel, W.; Steller, M. On closed Weingarten surfaces. Mon. Math.
**2005**, 146, 113–126. [Google Scholar] [CrossRef] - López, R. On linear Weingarten surfaces. Int. J. Math.
**2008**, 19, 439–448. [Google Scholar] [CrossRef] - Morabito, F.; Rodriguez, M.M. Classification of rotational special Weingarten surfaces of minimal type in S
^{2}× R and H^{2}× R. Math. Z.**2013**, 273, 379–399. [Google Scholar] [CrossRef] - Yoon, D.W.; Tuncer, Y.; Karacan, M.K. Non-degenerate quadric surfaces of Weingarten type. Ann. Pol. Math.
**2013**, 107, 59–69. [Google Scholar] [CrossRef] - Pottmann, H.; Grohs, P.; Mitra, N.J. Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Copmut. Math.
**2009**, 31, 391–419. [Google Scholar] [CrossRef] - Šipuš, Ž.M. Translation surfaces of constant curvatures in a simpley isotropic space. Period. Math. Hung.
**2014**, 68, 160–175. [Google Scholar] [CrossRef] - Aydin, M.E. Classification Results on Surfaces in the Isotropic 3-Space; Cornell University Library: Ithaca, NY, USA, 2016. [Google Scholar]
- Öğrenmiş, A.O. Rotational surfaces in isotropic spaces satisfying weingarten conditions. Open Phys.
**2016**, 14, 221–225. [Google Scholar]

**Sample Availability:**Samples of the compounds are available from the authors.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yoon, D.W.; Lee, J.W.
Linear Weingarten Helicoidal Surfaces in Isotropic Space. *Symmetry* **2016**, *8*, 126.
https://doi.org/10.3390/sym8110126

**AMA Style**

Yoon DW, Lee JW.
Linear Weingarten Helicoidal Surfaces in Isotropic Space. *Symmetry*. 2016; 8(11):126.
https://doi.org/10.3390/sym8110126

**Chicago/Turabian Style**

Yoon, Dae Won, and Jae Won Lee.
2016. "Linear Weingarten Helicoidal Surfaces in Isotropic Space" *Symmetry* 8, no. 11: 126.
https://doi.org/10.3390/sym8110126