# Optimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Lemma**

**1.**

**Lemma**

**2.**

## 3. Optimal Inequalities for the Casorati Curvatures of Submanifolds in a Generalized Complex Space form Endowed with a Semi-Symmetric Non-Metric Connection

**Theorem**

**1.**

**Proof.**

**Remark**

**1.**

## 4. Optimal Inequalities for the Casorati Curvatures of Submanifolds in a Generalized Sasakian Space form Endowed with a Semi-Symmetric Non-Metric Connection

**Theorem**

**2.**

**Proof.**

**Remark**

**2.**

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Chen, B.-Y. Some pinching and classiffication theorems for minimal submanifolds. Arch. Math.
**1993**, 60, 568–578. [Google Scholar] [CrossRef] - Chen, B.-Y. A general inequality for submanifolds in complex space forms and its applications. Arch. Math.
**1996**, 67, 519–528. [Google Scholar] [CrossRef] - Chen, B.-Y.; Dillen, F. Optimal general inequalities for Lagrangian submanifolds in complex space forms. J. Math. Anal. Appl.
**2011**, 379, 229–239. [Google Scholar] [CrossRef] - Oiagă, A.; Mihai, I.B.-Y. Chen inequalities for slant submanifolds in complex space forms. Demonstr. Math.
**1999**, 32, 835–846. [Google Scholar] - Alegre, P.; Carriazo, A.Y.; Kim, Y.H.; Yoon, D.W.B.-Y. Chen’s inequality for submanifolds of generalized space forms. Indian J. Pure Appl. Math.
**2007**, 38, 185–201. [Google Scholar] - Mihai, A.B.-Y. Chen inequalities for slant submanifolds in generalized complex space forms. Rad. Mat.
**2004**, 12, 215–231. [Google Scholar] - Özgür, C.B.-Y. Chen inequalities for submanifolds a Riemannian manifold of a quasi-constant curvature. Turk. J. Math.
**2011**, 35, 501–509. [Google Scholar] - Aydin, M.E.; Mihai, A.; Mihai, I. Some inequalitie on submanifold in statistical manifolds of constant curvature. Filomat
**2015**, 29, 465–477. [Google Scholar] [CrossRef] - Hayden, H.A. Subspaces of a space with torsion. Proc. Lond. Math. Soc.
**1932**, 34, 27–50. [Google Scholar] [CrossRef] - Yano, K. On semi-symmetric metric connection. Rev. Roum. Math. Pures Appl.
**1970**, 15, 1579–1586. [Google Scholar] - Nakao, Z. Submanifolds of a Riemannian manifold with semi-symmetric metric connections. Proc. Am. Math. Soc.
**1976**, 54, 261–266. [Google Scholar] [CrossRef] - Agashe, N.S.; Chafle, M.R. A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math.
**1992**, 23, 399–409. [Google Scholar] - Agashe, N.S.; Chafle, M.R. On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor
**1994**, 55, 120–130. [Google Scholar] - Mihai, A.; Özgür, C. Chen inequalities for submanifols of real space forms with a semi-symmetric metric connection. Taiwan J. Math.
**2012**, 14, 1465–1477. [Google Scholar] - Mihai, A.; Özgür, C. Chen inequalities for submanifolds of complex space forms endowed with semi-symmtric metric connections. Rocky Mt. J. Math.
**2011**, 5, 1653–1673. [Google Scholar] [CrossRef] - Özgür, C.; Mihai, A. Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection. Can. Math. Bull.
**2012**, 55, 611–622. [Google Scholar] [CrossRef] - Zhang, P.; Pan, X.; Zhang, L. Inequalities for submanifolds of a Riemannian of nearly quasi-constant curvature with a semi-symmetric non-metric connection. Revista de la Unión Matemática Argentina
**2015**, 56, 1–19. [Google Scholar] - Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math.
**2008**, 9, 1–7. [Google Scholar] - Slesar, V.; Şahin, B.; Vîcu, G.E. Inequalities for the Casoratic curvatures of slant submanifolds in quaternionic space forms. J. Inequal. Appl.
**2014**, 2014, 123. [Google Scholar] [CrossRef] - Zhang, P.; Zhang, L. Remarks on inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms. J. Inequal. Appl.
**2014**, 2014, 452. [Google Scholar] [CrossRef] - Lee, C.W.; Lee, J.W.; Vîcu, G.E. A new proof for some optimal inequalities involving generalized normalized δ-Casorati curvatures. J. Inequal. Appl.
**2015**, 2015, 310. [Google Scholar] [CrossRef] - Lee, C.W.; Yoon, D.W.; Lee, J.W. Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections. J. Inequal. Appl.
**2014**, 2014, 1–9. [Google Scholar] [CrossRef] - Lee, C.W.; Yoon, D.W.; Vîcu, G.E.; Lee, J.W. Optimal inequalities for the Casorati curvatures of submanifolds of generalized space forms endowed with semi-symmetric metric connections. Bull. Korean Math. Soc.
**2015**, 52, 1631–1647. [Google Scholar] [CrossRef] - Lee, J.W.; Lee, C.W.; Yoon, D.W. Inequalities for generalized δ-Casorati curvatures of submanifolds in real space forms endowed with a semi-symmetric metric connection. Revista de la Unión Matemática Argentina
**2016**, 57, 53–62. [Google Scholar] - Zhang, P.; Zhang, L. Casorati inequalities for submanifolds in a Riemannian manifold of quasi-contant curvature with a semi-symmetric metric connection. Symmetry
**2016**, 8, 19. [Google Scholar] [CrossRef] - Chen, B.Y. Geometry of Submanifolds; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Tricerri, F.; Vanhecke, L. Curvature tensors on almost Hermitian manifolds. Trans. Am. Math. Soc.
**1981**, 267, 365–398. [Google Scholar] [CrossRef] - Blair, D.E. Riemannian Geometry of Contact and Cymplectic Manifolds; Birkhäuser Boston: Cambridge, MA, USA, 2002. [Google Scholar]
- Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian space forms. Isr. J. Math.
**2004**, 141, 157–183. [Google Scholar] [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

He, G.; Liu, H.; Zhang, L.
Optimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections. *Symmetry* **2016**, *8*, 113.
https://doi.org/10.3390/sym8110113

**AMA Style**

He G, Liu H, Zhang L.
Optimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections. *Symmetry*. 2016; 8(11):113.
https://doi.org/10.3390/sym8110113

**Chicago/Turabian Style**

He, Guoqing, Hairong Liu, and Liang Zhang.
2016. "Optimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections" *Symmetry* 8, no. 11: 113.
https://doi.org/10.3390/sym8110113