Testing Lorentz and CPT Invariance with Neutrinos
Abstract
:1. Introduction
2. Lorentz-Violating Neutrinos
3. Oscillation-Free Signals
4. Neutrino Oscillations
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Greenberg, O.W. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 2002, 89, 231602. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.R.; Mavromatos, N.E. Comments on CP, T and CPT violation in neutral kaon decays. Phys. Rept. 1999, 320, 341–354. [Google Scholar] [CrossRef]
- Klinkhamer, F.R. A CPT anomaly. Nucl. Phys. B 2000, 578, 277–289. [Google Scholar] [CrossRef]
- Adam, C.; Klinkhamer, F.R. Causality and CPT violation from an Abelian Chern-Simons like term. Nucl. Phys. B 2001, 607, 247–267. [Google Scholar] [CrossRef]
- Barenboim, G.; Borissov, L.; Lykken, J. Neutrinos as the messengers of CPT violation. J. High Energy Phys. 2002, 0210, 001. [Google Scholar] [CrossRef]
- Barenboim, G.; Borissov, L.; Lykken, J. CPT violation and the nature of neutrinos. Phys. Lett. B 2002, 537, 227–232. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Rupp, C. Space-time foam, CPT anomaly, and photon propagation. Phys. Rev. D 2004, 70, 045020. [Google Scholar] [CrossRef]
- Mavromatos, N.E. CPT violation and decoherence in quantum gravity. Lect. Notes Phys. 2005, 669, 245–320. [Google Scholar]
- Chaichian, M.; Dolgov, A.D.; Novikov, V.A. CPT violation does not lead to violation of Lorentz invariance and vice versa. Phys. Lett. B 2011, 699, 177–180. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Picek, I. The Rédei-like model and testing Lorentz invariance. Phys. Lett. B 1982, 114, 141–146. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Picek, I. Lorentz non-invariance. Nucl. Phys. B 1983, 211, 269–296. [Google Scholar] [CrossRef]
- Huerta, R.; Lucio, J.L. Testing Lorentz invariance in baryon decay. Phys. Lett. B 1983, 131, 471–473. [Google Scholar] [CrossRef]
- Huerta, R.; Lucio, J.L. Constraint on Lorentz non-invariance from the Michel parameter. Phys. Lett. B 1983, 124, 369–370. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz and CPT violation in neutrinos. Phys. Rev. D 2004, 69, 016005. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef]
- Pontecorvo, B. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. J. Exp. Theor. Phys. 1968, 26, 984. [Google Scholar]
- Díaz, J.S.; Kostelecký, V.A.; Mewes, M. Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 2009, 80, 076007. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz and CPT violation in the neutrino sector. Phys. Rev. D 2004, 70, 031902. [Google Scholar] [CrossRef]
- Klinkhamer, F.R. Lorentz-noninvariant neutrino oscillations: Model and predictions. Int. J. Mod. Phys. A 2006, 21, 161–183. [Google Scholar] [CrossRef]
- Katori, T.; Kostelecký, V.A.; Tayloe, R. Global three-parameter model for neutrino oscillations using Lorentz violation. Phys. Rev. D 2006, 74, 105009. [Google Scholar] [CrossRef]
- Barger, V.; Marfatia, D.; Whisnant, K. Challenging Lorentz noninvariant neutrino oscillations without neutrino masses. Phys. Lett. B 2007, 653, 267–277. [Google Scholar] [CrossRef]
- Barger, V.; Liao, J.; Marfatia, D.; Whisnant, K. Lorentz noninvariant oscillations of massless neutrinos are excluded. Phys. Rev. D 2011, 84, 056014. [Google Scholar] [CrossRef]
- Díaz, J.S.; Kostelecký, V.A. Three-parameter Lorentz-violating texture for neutrino mixing. [CrossRef]
- Rong, S.-J.; Liu, Q.-Y. The perturbed puma model. Chin. Phys. Lett. 2012, 29, 041402. [Google Scholar] [CrossRef]
- Alspector, J.; Kalbfleisch, G.R.; Baggett, N. Experimental comparison of neutrino and muon velocities. Phys. Rev. Lett. 1976, 36, 837. [Google Scholar] [CrossRef]
- Kalbfleisch, G.R.; Baggett, N.; Fowler, E.C.; Alspector, J. Experimental comparison of neutrino, anti-neutrino, and muon velocities. Phys. Rev. Lett. 1979, 43, 1361. [Google Scholar] [CrossRef]
- Adamson, P.; Andreopoulos, C.; Arms, K.E. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam. Phys. Rev. D 2007, 76, 072005. [Google Scholar] [CrossRef]
- Adam, T.; Agafonova, N.; Aleksandrov, A. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. J. High Energy Phys. 2012, 2012, 1–37. [Google Scholar] [CrossRef]
- Antonello, M.; Aprili, P.; Baiboussinov, B. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. Phys. Lett. B 2012, 713, 17–22. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Barzaghi, R.; Bellini, G. Measurement of CNGS muon neutrino speed with Borexino. Phys. Lett. B 2012, 716, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Agafonova, N.Y.; Aglietta, M.; Antonioli, P. Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector. Phys. Rev. Lett. 2012, 109, 070801. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.J. Tests of relativity from SN1987A. Phys. Rev. D 1987, 36, 3276. [Google Scholar] [CrossRef]
- Altschul, B. Consequences of neutrino Lorentz violation for leptonic meson decays. Phys. Rev. D 2011, 84, 091902. [Google Scholar] [CrossRef]
- Chodos, A.; Kostelecký, V.A.; Potting, R.; Gates, E. Null experiments for neutrino masses. Mod. Phys. Lett. A 1992, 7, 467–476. [Google Scholar] [CrossRef]
- Chodos, A.; Kostelecký, V.A. Nuclear null tests for spacelike neutrinos. Phys. Lett. B 1994, 336, 295–302. [Google Scholar] [CrossRef]
- Gonzalez-Mestres, L. Astrophysical consequences of the OPERA superluminal neutrino. 2011; arXiv:1109.6630. [Google Scholar]
- Bi, X.-J.; Yin, P.-F.; Yu, Z.-H.; Yuan, Q. Constraints and tests of the OPERA superluminal neutrinos. Phys. Rev. Lett. 2011, 107, 241802. [Google Scholar] [CrossRef] [PubMed]
- Cowsik, R.; Nussinov, S.; Sarkar, U. Superluminal neutrinos at OPERA confront pion decay kinematics. Phys. Rev. Lett. 2011, 107, 251801. [Google Scholar] [CrossRef] [PubMed]
- Mannarelli, M.; Mitra, M.; Villante, F.L.; Vissani, F. Non-standard neutrino propagation and pion decay. J. High Energy Phys. 2012, 1201, 1–17. [Google Scholar] [CrossRef]
- Baccetti, V.; Tate, K.; Visser, M. Lorentz violating kinematics: Threshold theorems. J. High Energy Phys. 2012, 1203, 087. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.G.; Ackermann, M.; Adams, J. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 2013, 342, 1242856. [Google Scholar] [PubMed]
- Díaz, J.S.; Kostelecký, V.A.; Mewes, M. Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D 2014, 89, 043005. [Google Scholar] [CrossRef]
- Coleman, S.R.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008. [Google Scholar] [CrossRef]
- Jacobson, T.; Liberati, S.; Mattingly, D. Threshold effects and Planck scale Lorentz violation: Combined constraints from high-energy astrophysics. Phys. Rev. D 2003, 67, 124011. [Google Scholar] [CrossRef]
- Mattingly, D.M.; Maccione, L.; Galaverni, M.; Liberati, S.; Sigl, G. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation. J. Cosmol. Astropart. Phys. 2010, 1002, 007. [Google Scholar] [CrossRef]
- Alexandre, J.; Ellis, J.; Mavromatos, N.E. On the possibility of superluminal neutrino propagation. Phys. Lett. B 2012, 706, 456–461. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. Pair Creation constrains superluminal neutrino propagation. Phys. Rev. Lett. 2011, 107, 181803. [Google Scholar] [CrossRef] [PubMed]
- Carmona, J.M.; Cortes, J.L. Constraints from neutrino decay on superluminal velocities. 2011; arXiv:1110.0430. [Google Scholar]
- Maccione, L.; Liberati, S.; Mattingly, D.M. Violations of Lorentz invariance in the neutrino sector: An improved analysis of anomalous threshold constraints. J. Cosmol. Astropart. Phys. 2013, 2013, 039. [Google Scholar] [CrossRef]
- Mohanty, S.; Rao, S. Constraint on super-luminal neutrinos from vacuum Cerenkov processes. 2011; arXiv:1111.2725. [Google Scholar]
- Li, M.; Liu, D.; Meng, J.; Wang, T.; Zhou, L. Replaying neutrino bremsstrahlung with general dispersion relations. 2011; arXiv:1111.3294. [Google Scholar]
- Huo, Y.; Li, T.; Liao, Y.; Nanopoulos, D.V.; Qi, Y. Constraints on neutrino velocities revisited. Phys. Rev. D 2012, 85, 034022. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Gardner, S. Pair production constraints on superluminal neutrinos revisited. arXiv:1112.1090.
- Borriello, E.; Chakraborty, S.; Mirizzi, A.; Serpico, P.D. Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 2013, 87, 116009. [Google Scholar] [CrossRef]
- Stecker, F.W. Limiting superluminal electron and neutrino velocities using the 2010 Crab Nebula flare and the IceCube PeV neutrino events. Astropart. Phys. 2014, 56, 16–18. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Propagation of superluminal PeV IceCube neutrinos: A high energy spectral cutoff or new constraints on Lorentz invariance violation. Phys. Rev. D 2014, 90, 043012. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T.; Liberati, S.; Mattingly, D. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 2015, 91, 045009. [Google Scholar] [CrossRef]
- Mazón, D. On the use of energy loss mechanisms to constrain Lorentz invariance violations. Phys. Rev. D 2014, 89, 056012. [Google Scholar] [CrossRef]
- Díaz, J.S.; Kostelecký, V.A.; Lehnert, R. Relativity violations and beta decay. Phys. Rev. D 2013, 88, 071902. [Google Scholar] [CrossRef]
- Díaz, J.S. Tests of Lorentz symmetry in single beta decay. Adv. High Energy Phys. 2014, 2014, 305298. [Google Scholar] [CrossRef]
- Angrik, J.; Armbrust, T.; Beglarian, A. KATRIN design report 2004. Wissenschaftliche Berichte FZKA 2005. FZKA Scientific Report 7090. [Google Scholar]
- Díaz, J.S. Limits on Lorentz and CPT violation from double beta decay. Phys. Rev. D 2014, 89, 036002. [Google Scholar] [CrossRef]
- Albert, J.B.; Barbeau, P.S.; Beck, D. First search for Lorentz and CPT violation in double beta decay with EXO-200. Phys. Rev. D 2016, 93, 072001. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D 2004, 70, 076002. [Google Scholar] [CrossRef]
- Abe, Y.; Aberle, C.; dos Anjos, J.C. First test of Lorentz violation with a reactor-based antineutrino experiment. Phys. Rev. D 2012, 86, 112009. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 2010, 82, 112003. [Google Scholar] [CrossRef]
- Auerbach, L.B.; Burman, R.L.; Caldwell, D.O. Tests of Lorentz violation in v− μ → v− e oscillations. Phys. Rev. D 2005, 72, 076004. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O. Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses. Phys. Lett. B 2013, 718, 1303. [Google Scholar] [CrossRef]
- Katori, T. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses. Mod. Phys. Lett. A 2012, 27, 1230024. [Google Scholar] [CrossRef]
- Adamson, P.; Andreopoulos, C.; Arms, K.E. Testing Lorentz invariance and CPT conservation with NuMI neutrinos in the MINOS near detector. Phys. Rev. Lett. 2008, 101, 151601. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.; Ayres, D.S.; Barr, G. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS near detector. Phys. Rev. D 2012, 85, 031101. [Google Scholar] [CrossRef]
- Adamson, P.; Auty, D.J.; Ayres, D.S. Search for Lorentz Invariance and CPT Violation with the MINOS far detector. Phys. Rev. Lett. 2010, 105, 151601. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Haga, Y.; Hayato, Y. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 2015, 91, 052003. [Google Scholar] [CrossRef]
- Rebel, B.; Mufson, S. The search for neutrino-antineutrino mixing resulting from Lorentz invariance violation using neutrino interactions in MINOS. Astropart. Phys. 2013, 48, 78–81. [Google Scholar] [CrossRef]
- Díaz, J.S.; Katori, T.; Spitz, J.; Conrad, J.M. Search for neutrino-antineutrino oscillations with a reactor experiment. Phys. Lett. B 2013, 727, 412–416. [Google Scholar] [CrossRef]
- Díaz, J.S.; Schwetz, T. Limits on CPT violation from solar neutrinos. Phys. Rev. D 2016, 93, 093004. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Katori, T.; Salvado, J. Effect of new physics in astrophysical neutrino flavor. Phys. Rev. Lett. 2015, 115, 161303. [Google Scholar] [CrossRef] [PubMed]
- Pauli, W. Offener brief an die gruppe der radioaktiven bei der gauvereins-tagung zu Tübingen. Datiert 1930, 4, 1316–1317. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.S. Testing Lorentz and CPT Invariance with Neutrinos. Symmetry 2016, 8, 105. https://doi.org/10.3390/sym8100105
Díaz JS. Testing Lorentz and CPT Invariance with Neutrinos. Symmetry. 2016; 8(10):105. https://doi.org/10.3390/sym8100105
Chicago/Turabian StyleDíaz, Jorge S. 2016. "Testing Lorentz and CPT Invariance with Neutrinos" Symmetry 8, no. 10: 105. https://doi.org/10.3390/sym8100105