Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs
Abstract
:1. Introduction
2. CGAs and Preliminary Consideration
- (ii)
- For a necessary condition for the symmetry of the Equation (9) under with is that the function F is independent of
3. The Case of
4. The Case of : -Symmetry
- (ii)
- (iii)
5. The Case of : -Symmetry
- (1)
- For a given draw a rooted tree according to the branching rules given in Figure 1. Each vetex and each edge of this tree are labelled. The root is labelled by Other vertices and edges are labelled as indicaed in Figure 1. Each vertex has at most two children according to its label. The vertex has no children if its label is Thus the hight of the tree is An example for is indicated in Figure 2.
- (2)
- Take a directed path from the root to one of the verticies with label and multiply all the edge labels on this path. For instance, take the path in Figure 2. Then the multiplication of the labels is
- (3)
- If there exit other vertices whose label is also (same label as (2)), then repeat the same computation as (2) for the direct paths to such vertices. In Figure 2 there is one more vertex whose label is and the path is We have for this path, too.
- (4)
- Take summation of all such multiplication for the paths to the vertices whose label is then this summation gives the coefficient For the tree in Figure 2 the coefficient of is obtained by adding the quantities calculated in (2) and (3):
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aizawa, N.; Kimura, Y.; Segar, J. Intertwining operators for ℓ-conformal Galilei algebras and hierarchy of invariant equations. J. Phys. A Math. Theor. 2013, 46. [Google Scholar] [CrossRef]
- Aizawa, N.; Dobrev, V.K.; Doebner, H.D. Intertwining operators for Schrödinger algebras and hierarchy of invariant equations. In Quantum Theory and Symmetries; Kapuścik, E., Horzela, A., Eds.; World Scientific: Singapore, 2002; pp. 222–227. [Google Scholar]
- Aizawa, N.; Dobrev, V.K.; Doebner, H.D.; Stoimenov, S. Intertwining operators for the Schrödinger algebra in n ≥ 3 space dimension. In Proceedings of the VII International Workshop on Lie Theory and Its Applications in Physics; Doebner, H.D., Dobrev, V.K., Eds.; Heron Press: Sofia, Bulgaria, 2008; pp. 372–399. [Google Scholar]
- Aizawa, N.; Chandrashekar, R.; Segar, J. Lowest weight representations, singular vectors and invariant equations for a class of conformal Galilei algebras. SIGMA 2015, 11. [Google Scholar] [CrossRef]
- Negro, J.; del Olmo, M.; Rodrıguez-Marco, A. Nonrelativistic conformal groups. J. Math. Phys. 1997, 38, 3786–3809. [Google Scholar] [CrossRef]
- Negro, J.; del Olmo, M.; Rodrıguez-Marco, A. Nonrelativistic conformal groups. II. Further developments and physical applications. J. Math. Phys. 1997, 38, 3810–3831. [Google Scholar] [CrossRef]
- Havas, P.; Plebański, J. Conformal extensions of the Galilei group and their relation to the Schrödinger group. J. Math. Phys. 1978, 19, 482–488. [Google Scholar] [CrossRef]
- Henkel, M. Local scale invariance and strongly anisotropic equilibrium critical systems. Phys. Rev. Lett. 1997, 78. [Google Scholar] [CrossRef]
- Martelli, D.; Tachikawa, Y. Comments on Galilean conformal field theories and their geometric realization. JHEP 2010, 5, 1–31. [Google Scholar] [CrossRef]
- Lie, S. Theorie der Transformationsgruppen; Chelsea: New York, NY, USA, 1970. [Google Scholar]
- Jacobi, C.G.J.; Borchardt, C.W. Vorlesungen über Dynamik; Reimer, G., Ed.; University of Michigan Library: Ann Arbor, MI, USA, 1866. [Google Scholar]
- Niederer, U. The maximal kinematical invariance group of the free Schrodinger equation. Helv. Phys. Acta 1972, 45, 802–810. [Google Scholar]
- Niederer, U. The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 1973, 46, 191–200. [Google Scholar]
- Niederer, U. The maximal kinematical invariance groups of schroedinger equations with arbitrary potentials. Helv. Phys. Acta 1974, 47, 167–172. [Google Scholar]
- Hagen, C.R. Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D 1972, 5, 377–388. [Google Scholar] [CrossRef]
- Jackiw, R. Introducing scale symmetry. Phys. Today 1972, 25, 23–27. [Google Scholar] [CrossRef]
- Burdet, G.; Perrin, M. Many-body realization of the Schrödinger algebra. Lett. Nuovo Cim. 1972, 4, 651–655. [Google Scholar] [CrossRef]
- Son, D.T. Toward an AdS/cold atoms correspondence: A geometric realization of the Schroedinger symmetry. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Balasubramanian, K.; McGreevy, J. Gravity duals for nonrelativistic conformal field theories. Phys. Rev. Lett. 2008, 101. [Google Scholar] [CrossRef]
- Unterberger, J.; Roger, C. The Schrödinger-Virasoro Algebra: Mathematical Structure and Dynamical Schrödinger Symmetries; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Aizawa, N.; Isaac, P.S.; Kimura, Y. Highest weight representations and Kac determinants for a class of conformal Galilei algebras with central extension. Int. J. Math. 2012, 23, 1250118:1–1250118:25. [Google Scholar] [CrossRef]
- Henkel, M. Phenomenology of local scale invariance: From conformal invariance to dynamical scaling. Nucl. Phys. B 2002, 641, 405–486. [Google Scholar] [CrossRef]
- Aizawa, N.; Isaac, P.S. On irreducible representations of the exotic conformal Galilei algebra. J. Phys. A Math. Theor. 2011, 44. [Google Scholar] [CrossRef]
- Lü, R.; Mazorchuk, V.; Zhao, K. On simple modules over conformal Galilei algebras. J. Pure Appl. Algebra 2014, 218, 1885–1899. [Google Scholar] [CrossRef]
- Fushchich, W.I.; Cherniha, R.M. The Galilean relativistic principle and nonlinear partial differential equations. J. Phys. A Math. Gen. 1985, 18, 3491–3503. [Google Scholar] [CrossRef]
- Fushchich, W.I.; Cherniha, R.M. Galilei invariant non-linear equations of Schrödinger type and their exact solutions. I. Ukr. Math. J. 1989, 41, 1161–1167. [Google Scholar] [CrossRef]
- Rideau, G.; Winternitz, P. Evolution equations invariant under two-dimensional space-time Schrödinger group. J. Math. Phys. 1993, 34, 558–570. [Google Scholar] [CrossRef]
- Cherniha, R.M.; Henkel, M. The exotic conformal Galilei algebra and nonlinear partial differential equations. J. Math. Anal. Appl. 2010, 369, 120–132. [Google Scholar] [CrossRef]
- Fushchych, W.I.; Cherniha, R.M. Galilei-invariant nonlinear systems of evolution equations. J. Phys. A Math. Gen. 1995, 28, 5569–5579. [Google Scholar] [CrossRef]
- Cherniha, R.M.; Henkel, M. On non-linear partial differential equations with an infinite-dimensional conditional symmetry. J. Math. Anal. Appl. 2004, 298, 487–500. [Google Scholar] [CrossRef]
- Duval, C.; Horvathy, P.A. Non-relativistic conformal symmetries and Newton–Cartan structures. J. Phys. A Math. Theor. 2009, 42. [Google Scholar] [CrossRef]
- Duval, C.; Horvathy, P.A. Conformal Galilei groups, Veronese curves and Newton–Hooke spacetimes. J. Phys. A Math. Theor. 2011, 44, 335203:1–335203:21. [Google Scholar] [CrossRef]
- Gomis, J.; Kamimura, K. Schrödinger equations for higher order nonrelativistic particles and N-Galilean conformal symmetry. Phys. Rev. D 2012, 85. [Google Scholar] [CrossRef]
- Galajinsky, A.; Masterov, I. Remarks on l-conformal extension of the Newton–Hooke algebra. Phys. Lett. B 2011, 702, 265–267. [Google Scholar] [CrossRef]
- Galajinsky, A.; Masterov, I. Dynamical realization of l-conformal Galilei algebra and oscillators. Nucl. Phys. B 2013, 866, 212–227. [Google Scholar] [CrossRef]
- Galajinsky, A.; Masterov, I. Dynamical realizations of l-conformal Newton–Hooke group. Phys. Lett. B 2013, 723, 190–195. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Galajinsky, A.; Gonera, J.; Masterov, I. Conformal Newton–Hooke symmetry of Pais–Uhlenbeck oscillator. Nucl. Phys. B 2014, 885, 150–162. [Google Scholar] [CrossRef]
- Galajinsky, A.; Masterov, I. On dynamical realizations of l-conformal Galilei and Newton–Hooke algebras. Nucl. Phys. B 2015, 896, 244–254. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, J.; Kosiński, P.; Maślanka, P. On dynamical realizations of l-conformal Galilei groups. Nucl. Phys. B 2013, 876, 309–321. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, J.; Kijanka-Dec, A. Nonrelativistic conformal transformations in Lagrangian formalism. Phys. Rev. D 2013, 87. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, J. Dynamical interpretation of nonrelativistic conformal groups. Phys. Lett. B 2013, 721, 319–322. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, J. Unitary representations of N-conformal Galilei group. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Andrzejewski, K. Conformal Newton–Hooke algebras, Niederer’s transformation and Pais–Uhlenbeck oscillator. Phys. Lett. B 2014, 738, 405–411. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, J.; Maślanka, P. Nonrelativistic conformal groups and their dynamical realizations. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Aizawa, N.; Kuznetsova, Z.; Toppan, F. ℓ-oscillators from second-order invariant PDEs of the centrally extended Conformal Galilei Algebras. J. Math. Phys. 2015, 56, 031701:1–031701:14. [Google Scholar] [CrossRef]
- Olver, P. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; CUP Archive: New York, NY, USA, 1966; Volume 1. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aizawa, N.; Kato, T. Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs. Symmetry 2015, 7, 1989-2008. https://doi.org/10.3390/sym7041989
Aizawa N, Kato T. Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs. Symmetry. 2015; 7(4):1989-2008. https://doi.org/10.3390/sym7041989
Chicago/Turabian StyleAizawa, Naruhiko, and Tadanori Kato. 2015. "Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs" Symmetry 7, no. 4: 1989-2008. https://doi.org/10.3390/sym7041989
APA StyleAizawa, N., & Kato, T. (2015). Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs. Symmetry, 7(4), 1989-2008. https://doi.org/10.3390/sym7041989