Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade
Abstract
:1. Introduction
2. Exact and Stochastic Link Reversal Symmetry
2.1. Graph Ensembles and Stochastic Symmetries
2.2. Transpose Equivalence and Transpose Equiprobability
3. Reciprocity of Directed Networks
3.1. The Traditional Approach to Reciprocity
3.2. An Improved Definition
3.3. Minimum Reciprocity
3.4. Related Topological Properties
4. Reciprocity, Link Reversal Symmetry, and Ensemble Equiprobability
5. Symmetries, Symmetry Breaking and the Evolution of World Trade
5.1. Undirected Symmetries
5.2. Directed Symmetries
5.3. Topological Space and Embedding Spaces
5.4. The Reciprocation Process of World Trade and Spatial Symmetry Breaking
6. Conclusions
Acknowledgments
References
- Garlaschelli, D.; Ruzzenenti, F.; Basosi, R. Complex networks and symmetry I: A review. Symmetry 2010, in press. [Google Scholar] [CrossRef]
- Rosen, J. Symmetry Discovered. Concepts and Applications in Nature and Science; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Lin, S.K. The Nature of the Chemical Process. 1. Symmetry evolution—revised information theory, similarity principle and ugly symmetry. Int. J. Mol. Sci. 2001, 2, 10–39. [Google Scholar] [CrossRef]
- Prigogine, Y. Time, Structure and Fluctuations. Nobel Lecture. 1977. Available online: http://nobelprize.org/nobel_prizes/chemistry/laureates/1977/prigogine–lecture.pdf (accessed on 26 September 2010).
- Mainzer, K. Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science; World Scientific Publishing: Singapore, 2005. [Google Scholar]
- Caldarelli, G. Scale-Free Networks: Complex Webs in Nature and Technology; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Caldarelli, G.; Vespignani, A. Large Scale Structure and Dynamics of Complex Networks; World Scientific Press: Singapore, 2007. [Google Scholar]
- Barrat, A.; Barthelemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Pascual, M.; Dunne, J.A. Ecological Networks: Linking Structure to Dynamics in Food Webs; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Pastor-Satorras, R.; Vespignani, A. Evolution and Structure of the Internet: A Statistical Physics Approach; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Buchanan, M.; Caldarelli, G.; De Los Rios, P.; Rao, F.; Vendruscolo, M. Networks in Cell Biology; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Gross, T.; Sayama, H. Adaptive Networks; Springer/NECSI: Cambridge, MA, USA, 2009. [Google Scholar]
- West, G.B.; Brown, J.H.; Enquist, B.J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 1999, 284, 1677–1679. [Google Scholar] [CrossRef] [PubMed]
- Banavar, J.R.; Maritan, A.; Rinaldo, A. Size and form in efficient transportation networks. Nature 1999, 399, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Ruzzenenti, F.; Basosi, R. The rebound effect: An evolutionary perspective. Ecol. Econ. 2008, 67, 526–537. [Google Scholar] [CrossRef]
- Ruzzenenti, F.; Basosi, R. Complexity change and space symmetry rupture. Ecol. Model. 2009, 220, 1880–1885. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Loffredo, M.I. Maximum likelihood: Extracting unbiased information from complex networks. Phys. Rev. E 2008, 78, 015101. [Google Scholar] [CrossRef]
- MacArthur, B.D.; Sánchez-García, R.J.; Anderson, J.W. Symmetry in complex networks. Discrete Appl. Math. 2008, 156, 3525–3531. [Google Scholar] [CrossRef]
- Xiao, Y.; MacArthur, B.D.; Wang, H.; Xiong, M.; Wang, W. Network quotients: Structural skeletons of complex systems. Phys. Rev. E 2008, 78, 046102. [Google Scholar] [CrossRef]
- MacArthur, B.D.; Sánchez-García, R.J. Spectral characteristics of network redundancy. Phys. Rev. E 2009, 80, 026117. [Google Scholar] [CrossRef]
- Wang, H.; Yan, G.; Xiao, Y. Symmetry in world trade network. J. Syst. Sci. Complex. 2009, 22, 280–290. [Google Scholar] [CrossRef]
- Squartini, T.; Garlaschelli, D. Exact maximum-likelihood method to detect patterns in real networks. University of Siena: Siena, Italy, Unpublished work. 2010. [Google Scholar]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Garlaschelli, D.; Loffredo, M.I. Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 2004, 93, 268701. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Loffredo, M.I. Multispecies grand-canonical models for networks with reciprocity. Phys. Rev. E 2006, 73, 015101. [Google Scholar] [CrossRef]
- Meyers, L.A.; Newman, M.E.J.; Pourbohloul, B. Predicting epidemics on directed contact networks. J. Theor. Biol. 2006, 240, 400–418. [Google Scholar] [CrossRef]
- Boguna, M.; Serrano, M.A. Generalized percolation in random directed networks. Phys. Rev. E 2005, 72, 016106. [Google Scholar] [CrossRef]
- Perra, N.; Zlatic, V.; Chessa, A.; Conti, C.; Donato, D.; Caldarelli, G. PageRank equation and localization in the WWW. Europhys. Lett. 2009, 88, 48002. [Google Scholar] [CrossRef]
- Zamora-Lopez, G.; Zlatic, V.; Zhou, C.; Stefancic, H.; Kurths, J. Reciprocity of networks with degree correlations and arbitrary degree sequences. Phys. Rev. E 2008, 77, 016106. [Google Scholar] [CrossRef] [PubMed]
- Zlatic, V.; Stefancic, H. Influence of reciprocal edges on degree distribution and degree correlations. Phys. Rev. E 2009, 80, 016117. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.A.; Boguna, M. Topology of the world trade web. Phys. Rev. E 2003, 68, 015101. [Google Scholar] [CrossRef] [PubMed]
- Garlaschelli, D.; Loffredo, M.I. Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 2004, 93, 188701. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Loffredo, M.I. Structure and evolution of the world trade network. Physica A 2005, 355, 138–144. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Di Matteo, T.; Aste, T.; Caldarelli, G.; Loffredo, M.I. Interplay between topology and dynamics in the World Trade Web. Eur. Phys. J. B 2007, 57, 159–164. [Google Scholar] [CrossRef]
- Serrano, M.A. Phase transition in the globalization of trade. J. Stat. Mech. Theory Exp. 2007, 2007, L01002. [Google Scholar] [CrossRef]
- Fagiolo, G.; Reyes, J.; Schiavo, S. World-trade web: Topological properties, dynamics, and evolution. Phys. Rev. E 2009, 79, 036115. [Google Scholar] [CrossRef]
- International E Road Network. Available online: http://en.wikipedia.org/wiki/File:International_E_Road_Network.png (accessed on 26 September 2010).
- Spiekermann, K.; Wegener, M. Trans-European networks and unequal accessibility in Europe. Eur. J. Reg. Dev. (EUREG) 1996, 4, 35–42. [Google Scholar]
- Richard, C. McLuhan and spatial communication. West. J. Commun. 2009, 63, 348–363. [Google Scholar]
- McLuhan, M.; Powers, B. The Global Village: Transformations in World Life and Media in the 21st Century; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
Network | Range of |
---|---|
Perfectly reciprocal | |
World Trade Web (53 webs) | |
World Wide Web (1 web) | |
Neural Networks (2 webs) | |
Email Networks (2 webs) | |
Word Networks (2 webs) | |
Metabolic Networks (43 webs) | |
Areciprocal | |
Shareholding Networks (2 webs) | |
Food Webs (28 webs) | |
Perfectly antireciprocal |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.)
Share and Cite
Ruzzenenti, F.; Garlaschelli, D.; Basosi, R. Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade. Symmetry 2010, 2, 1710-1744. https://doi.org/10.3390/sym2031710
Ruzzenenti F, Garlaschelli D, Basosi R. Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade. Symmetry. 2010; 2(3):1710-1744. https://doi.org/10.3390/sym2031710
Chicago/Turabian StyleRuzzenenti, Franco, Diego Garlaschelli, and Riccardo Basosi. 2010. "Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade" Symmetry 2, no. 3: 1710-1744. https://doi.org/10.3390/sym2031710
APA StyleRuzzenenti, F., Garlaschelli, D., & Basosi, R. (2010). Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade. Symmetry, 2(3), 1710-1744. https://doi.org/10.3390/sym2031710