SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms
Abstract
:1. Introduction
2. Generalized Oscillator Algebra
2.1. The Algebra
2.2. The Oscillator Algebra as a Lie Algebra
2.3. Rotated Shift Operators for Su(2) and Su(1,1)
2.3.1. The Su(2) Case
2.3.2. The Su(1,1) Case
3. Phase Operators
3.1. The Su(2) Case
3.2. The Su(1,1) Case
4. Truncated Generalized Oscillator Algebra
5. Mutually Unbiased Bases
5.1. Quantization of the Phase Parameter
5.2. Connecting the Phase Operator with a Quantization Scheme
5.3. Introduction of Mutually Unbiased Bases
6. Discrete Fourier Transforms
6.1. Quantum Quadratic Discrete Fourier Transform
6.2. Quadratic Discrete Fourier Transform
6.2.1. Factorization of the Quadratic DFT
6.2.2. Hadamard Matrices
6.2.3. Trace Relations
6.2.4. Diagonalization
6.2.5. Link with the Cyclic Group
6.2.6. Decomposition
6.2.7. Weyl Pairs
6.2.8. Link with a Lie Algebra
7. Closing Remarks
Acknowledgments
References
- Fernández, C.D.J.; Nieto, L.M.; Rosas-Ortiz, O. Distorted Heisenberg algebra and coherent states for isospectral oscillator Hamiltonians. J. Phys. A: Math. Gen. 1995, 28, 2693–2708. [Google Scholar] [CrossRef]
- Fernández, C.D.J.; Hussin, V. Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states. J. Phys. A: Math. Gen. 1999, 32, 3603–3619. [Google Scholar]
- Carballo, J.M.; Fernández, C.D.J.; Negro, J.; Nieto, L.M. Polynomial Heisenberg algebras. J. Phys. A: Math. Gen. 2004, 37, 10349–10362. [Google Scholar] [CrossRef]
- Plyushchay, M.S. Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions. Ann. Phys. NY 1996, 245, 339–360. [Google Scholar] [CrossRef]
- Plyushchay, M.S. Deformed Heisenberg algebra with reflection. Nucl. Phys. B 1997, 491, 619–634. [Google Scholar] [CrossRef]
- Plyushchay, M. Hidden nonlinear supersymmetries in pure parabosonic systems. Int. J. Mod. Phys. A 2000, 15, 3679–3698. [Google Scholar] [CrossRef]
- Horvathy, P.A.; Plyushchay, M.S.; Valenzuela, M. Bosons, fermions and anyons in the plane, and supersymmetry. Ann. Phys. NY. in press. [CrossRef]
- Quesne, C.; Vansteenkiste, N. C-lambda-extended harmonic oscillator and (para)supersymmetric quantum mechanics. Phys. Lett. A 1998, 240, 21–28. [Google Scholar] [CrossRef]
- Quesne, C. Spectrum generating algebra of the C-lambda-extended oscillator and multiphoton coherent states. Phys. Lett. A 2000, 272, 313–325. [Google Scholar] [CrossRef]
- Quesne, C.; Vansteenkiste, N. C-lambda-extended oscillator algebras and some of their deformations and applications to quantum mechanics. Int. J. Theor. Phys. 2000, 39, 1175–1215. [Google Scholar] [CrossRef]
- Quesne, C. Fractional supersymmetric quantum mechanics, topological invariants and generalized deformed oscillator algebras. Mod. Phys. Lett. A 2003, 18, 515–525. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M. A fractional supersymmetric oscillator and its coherent states. In Proceedings of the Sixth International Wigner Symposium, Istanbul, Turkey, 16–22 August 1999; Engin, A., Ed.; Bogazici University Press: Istanbul, Turkey, 2002; pp. 125–139. [Google Scholar]
- Daoud, M.; Kibler, M.R. On fractional supersymmetric quantum mechanics: The fractional supersymmetric oscillator. In Symmetry and Structural Properties of Condensed Matter; Lulek, T., Lulek, B., Wal, A., Eds.; World Scientific: Singapore, 2001; pp. 408–421. [Google Scholar]
- Daoud, M.; Kibler, M. Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics. Phys. Lett. A 2004, 321, 147–151. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Fractional supersymmetry and hierarchy of shape invariant potentials. J. Math. Phys. 2006, 47, 122108. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems. J. Phys. A: Math. Theor. 2010, 43, 115303. [Google Scholar] [CrossRef]
- Pegg, D.T.; Barnett, S.M. Phase properties of the quantized single-mode electromagnetic-field. Phys. Rev. A 1989, 39, 1665–1675. [Google Scholar] [CrossRef]
- Roy, P.; Roy, B. Remarks on the construction of a Hermitian phase operator. Quantum Semiclass. Opt. 1997, 9, L37–L44. [Google Scholar] [CrossRef]
- Roy, B.; Roy, P. Coherent states, even and odd coherent states in a finite-dimensional Hilbert space and their properties. J. Phys. A: Math. Gen. 1998, 31, 1307–1317. [Google Scholar] [CrossRef]
- Perelomov, A.M. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986. [Google Scholar]
- Gazeau, J.-P. Coherent States in Quantum Physics; Wiley-VCH: Berlin, Germany, 2009. [Google Scholar]
- Kibler, M.R. On the Wigner-Racah algebra of the group SU2 in a non-standard basis. In Symmetry and Structural Properties of Condensed Matter; Lulek, T., Lulek, B., Wal, A., Eds.; World Scientific: Singapore, 1999; pp. 222–233. [Google Scholar]
- Kibler, M.R. Representation theory and Wigner-Racah algebra of the group SU(2) in a noncanonical basis. Collect. Czech. Chem. Commun. 2005, 70, 771–796. [Google Scholar] [CrossRef]
- Kibler, M.R. Angular momentum and mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1792–1801. [Google Scholar] [CrossRef]
- Kibler, M.R.; Planat, M. A SU(2) recipe for mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1802–1807. [Google Scholar] [CrossRef]
- Albouy, O.; Kibler, M.R. SU(2) nonstandard bases: Case of mutually unbiased bases. SIGMA 2007, 3, 076. [Google Scholar]
- Albouy, O.; Kibler, M.R. A unified approach to SIC-POVMs and MUBs. J. Russ. Laser Res. 2007, 28, 429–438. [Google Scholar] [CrossRef]
- Kibler, M.R. Miscellaneous applications of quons. SIGMA 2007, 3, 092. [Google Scholar] [CrossRef]
- Kibler, M. Generalized spin bases for quantum chemistry and quantum information. Collect. Czech. Chem. Commun. 2008, 73, 1281–1298. [Google Scholar] [CrossRef]
- Kibler, M.R. Variations on a theme of Heisenberg, Pauli and Weyl. J. Phys. A: Math. Theor. 2008, 41, 375302. [Google Scholar] [CrossRef]
- Kibler, M.R. An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group. J. Phys. A: Math. Theor. 2009, 42, 353001. [Google Scholar] [CrossRef]
- Kibler, M.R. Bases for qudits from a nonstandard approach to SU(2). Phys. Atom. Nucl. in press. [CrossRef]
- Vourdas, A.; Brif, C.; Mann, A. Factorization of analytic representations in the unit disc and number-phase statistics of a quantum harmonic oscillator. J. Phys. A Math. Gen. 1996, 29, 5887–5898. [Google Scholar] [CrossRef]
- Berndt, B.C.; Evans, R.J.; Williams, K.S. Gauss and Jacobi Sums; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Ivanović, I.D. Geometrical description of quantum state determination. J. Phys. A: Math. Gen. 1981, 14, 3241–3245. [Google Scholar] [CrossRef]
- Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys. NY 1989, 191, 363–381. [Google Scholar] [CrossRef]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267–320. [Google Scholar] [CrossRef]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover Publications: New York, NY, USA, 1931. [Google Scholar]
- Schwinger, J. Unitary operator bases. Proc. Nat. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Havlíček, H.; Saniga, M. Projective ring line on an arbitrary single qudit. J. Phys. A: Math. Theor. 2008, 41, 015302. [Google Scholar] [CrossRef]
- Planat, M.; Baboin, A.-C.; Saniga, M. Multi-line geometry of qubit-qutrit and higher-order Pauli operators. Int. J. Theor. Phys. 2008, 47, 1127–1135. [Google Scholar] [CrossRef]
- Albouy, O. The isotropic line of ℤd2. J. Phys. A: Math. Theor. 2009, 42, 072001. [Google Scholar] [CrossRef]
- Planat, M.; Kibler, M. Unitary reflection groups for quantum fault tolerance. J. Comput. Theor. Nanosci. 2010, 7, 1–12. [Google Scholar] [CrossRef]
- Fairlie, D.B.; Fletcher, P.; Zachos, C.K. Infinite-dimensional algebras and a trigonometric basis for the classical Lie-algebras. J. Math. Phys. 1990, 31, 1088–1094. [Google Scholar] [CrossRef]
- Daoud, M.; Hassouni, Y.; Kibler, M. The k-fermions as objects interpolating between fermions and bosons. In Symmetries in Science X; Gruber, B., Ramek, M., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 63–77. [Google Scholar]
- Wolf, K.B.; Krötzsch, G. Geometry and dynamics in the fractional discrete Fourier transform. J. Opt. Soc. Am. A 2007, 24, 651–658. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. Fractional Fourier Transform with Applications in Optics and Signal Processing; Wiley: Chichester, UK, 2001. [Google Scholar]
- Condon, E.U. Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Nat. Acad. Sci. USA 1937, 23, 158–164. [Google Scholar] [CrossRef]
- Collins, S.A., Jr. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 1970, 60, 1168–1177. [Google Scholar] [CrossRef]
- Moshinsky, M.; Quesne, C. Oscillator systems. In Proceedings of the 15th Solvay Conference in Physics, 1970; Gordon and Breach: New York, NY, USA, 1974. [Google Scholar]
- Pei, S.-C.; Yeh, M.-H. Improved discrete fractional transform. Opt. Lett. 1997, 22, 1047–1049. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.-C.; Tseng, C.-C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 1999, 47, 1335–1348. [Google Scholar]
- Barker, L.; Candan, Ç.; Hakioğlu, T.; Kutay, M.A.; Ozaktas, H.M. The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform. J. Phys. A Math. Gen. 2000, 33, 2209–2222. [Google Scholar] [CrossRef]
- Healy, J.J.; Sheridan, J.T. Fast linear canonical transforms. J. Opt. Soc. Am. A 2010, 27, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Mehta, M.L. Eigenvalues and eigenvectors of the finite Fourier transform. J. Math. Phys. 1987, 28, 781–785. [Google Scholar] [CrossRef]
- Ruzzi, M. Jacobi ϑ-functions and discrete Fourier transforms. J. Math. Phys. 2006, 47, 063507. [Google Scholar] [CrossRef]
- Muñoz, C.A.; Rueda-Paz, J.; Wolf, K.B. Fractional discrete q-Fourier transforms. J. Phys. A Math. Theor. 2009, 42, 355212. [Google Scholar] [CrossRef]
Appendix: Properties of the Ordinary DFT Matrix
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.)
Share and Cite
Atakishiyev, N.M.; Kibler, M.R.; Wolf, K.B. SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms. Symmetry 2010, 2, 1461-1484. https://doi.org/10.3390/sym2031461
Atakishiyev NM, Kibler MR, Wolf KB. SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms. Symmetry. 2010; 2(3):1461-1484. https://doi.org/10.3390/sym2031461
Chicago/Turabian StyleAtakishiyev, Natig M., Maurice R. Kibler, and Kurt Bernardo Wolf. 2010. "SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms" Symmetry 2, no. 3: 1461-1484. https://doi.org/10.3390/sym2031461