Symmetrical Cooperative Frequency Control Strategy for Composite Energy Storage System with Electrolytic Aluminum Load
Abstract
1. Introduction
2. Frequency Regulation Control Model of HESS with Electrolytic Aluminum Loads
2.1. Thermal Power Unit Model
2.2. Composite Energy Storage Model
2.2.1. Abandoned Mine Pumped Storage Plant Model
2.2.2. Electrochemical Energy Storage Model
2.3. Aluminium Electrolysis Load Model
3. Proposed Secondary Frequency Regulation Control Strategy for Electrochemical Energy Storage
3.1. Frequency Regulation Control Method Based on Weighting Factors
3.2. Power Recovery Method Considering SOC and Frequency Deviation Constraints
4. Cooperative Frequency Regulation Strategies for Composite Energy Storage Systems Considering Aluminum Loads
4.1. Control Strategy for Composite Energy Storage System Based on Variable Filter Time Constant
4.2. Partitioning Rules for Frequency Regulation Intervals
5. Simulation Analysis
5.1. Robustness Evaluation and Optimal Parameter Determination Under Varying H and D
5.2. Analyzing the Frequency Regulation Performance of the Variable Filter Time Constant Controller
5.3. Simulation Analysis of Electrochemical Energy Storage Strategies
5.4. Cooperative Control Strategy Participation in Grid Frequency Control Performance Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SOC | State of Charge |
| ACE | Area control error |
| HESS | Hybrid Energy Storage System |
| ESS | Energy Storage System |
| EES | Electrochemical Energy Storage |
| EAL | Electrolytic aluminum load |
| AMPS | Abandoned mine pumped storage |
References
- Li, X.; Li, Y.; Tan, Q.; Zhang, S. Bi-objective robust dispatch model for virtual power plant with security-economy-green equilibrium in the new-type power system. Energy Convers. Manag. 2025, 344, 120253. [Google Scholar] [CrossRef]
- National Energy Administration. A Blue Book on the Development of the New Power System [EB]. 2 June 2023. Available online: http://www.nea.gov.cn/2023-06/02/c_1310724249.htm (accessed on 2 June 2023).
- Hu, J.; Liu, X.; Shahidehpour, M.; Xia, S. Optimal Operation of Energy Hubs With Large-Scale Distributed Energy Resources for Distribution Network Congestion Management. IEEE Trans. Sustain. Energy 2021, 12, 1755–1765. [Google Scholar] [CrossRef]
- Wang, J.; Du, W.; Yang, D.; Liu, G.; Chen, H. An Optimal Scheduling Method of Virtual Power Plant Cluster Considering Generation-grid-load-storage Coordination. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 1048–1052. [Google Scholar]
- Shi, L.; Lao, W.; Wu, F.; Zheng, T.; Lee, K.Y. Frequency Regulation Control and Parameter Optimization of Doubly-Fed Induction Machine Pumped Storage Hydro Unit. IEEE Access 2022, 10, 102586–102598. [Google Scholar] [CrossRef]
- Wu, X.; Shang, W.; Ma, Z.; Teng, W.; Zhang, S.; Luo, H. Coordinated control method for pumped and flywheel hybrid energy storage system. Energy Storage Sci. Technol. 2023, 12, 468–476. [Google Scholar]
- Ren, Y.; Sun, K.; Zhang, K.; Han, Y.; Zhang, H.; Wang, M.; Jing, X.; Mo, J.; Zou, W.; Xing, X. Optimization of the capacity configuration of an abandoned mine pumped storage/wind/photovoltaic integrated system. Appl. Energy 2024, 374, 124089. [Google Scholar] [CrossRef]
- Xie, H.; Hou, Z.; Gao, F.; Zhou, L.; Gao, Y.N. A new technology of pumped-storage power in underground coal mine: Principles, present situation and future. J. China Coal Soc. 2015, 40, 965–972. [Google Scholar]
- Zhong, R.; Teng, S.; Liang, R.; Shen, X. Research on Frequency Elasticity Enhancement Method of Mining Area Power Grid Based on Hybrid Energy Storage System. Power Syst. Technol. 2019, 43, 2291–2298. [Google Scholar]
- Li, T.; Gu, D.; Li, J.; Dong, B.; Liu, S. Construction of pumped storage peak shaving system for mine water based on abandoned coal mine goaf. Coal Sci. Technol. 2018, 46, 93–98. [Google Scholar]
- Liang, Z.; Li, M.; Zhou, M.; Gao, B.; Chen, F. Optimal scheduling strategy for PV-abandoned mine pumped storage-battery hybrid power generation system for PV energy consumption. Sci. Technol. Rev. 2021, 39, 52–58. [Google Scholar]
- Li, C.; Yang, Y.; Mao, X.; Xiong, X.; Dragicevic, T. Modeling, control and stabilization of virtual synchronous generator in future power electronics-dominated power systems: A survey of challenges, advances, and future trends. Int. J. Electr. Power Energy Syst. 2025, 171, 111001. [Google Scholar] [CrossRef]
- Yang, D.-Q.; Li, M.-J.; Ma, T.; Ni, J.-W.; Han, Z.-Y. Study on adaptive VSG parameters and SOC control strategy for PV-HESS primary frequency regulation. Energy 2025, 314, 133909. [Google Scholar] [CrossRef]
- Papageorgiou, P.G.; Oureilidis, K.O.; Christoforidis, G.C. Adaptive frequency regulation in a low-inertia low-voltage AC microgrid with multiple hybrid storage systems and photovoltaics. Sustain. Energy Grids Netw. 2025, 44, 102040. [Google Scholar] [CrossRef]
- Al-Kaoaz, H.N.A.; Alsammak, A.N.B. Utilizing hybrid renewable energy systems for enhancing transient stability in power grids: A comprehensive review. J. Eur. Des Syst. Autom. 2023, 56, 687–696. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.; Qian, W. A Review of Equalization Methods for Battery Energy Storage System. Trans. China Electrotech. Soc. 2024, 39, 4204–4225. [Google Scholar]
- National Energy Administration. Transcript of the National Energy Administration’s Press Conference in the First Quarter of 2024 [EB/OL]. 25 January 2024. Available online: https://www.nea.gov.cn/2024-01/25/c_1310762019.htm (accessed on 6 May 2024).
- Zhang, S.; Li, P.; Zhang, Y.; Liu, X. Secondary Frequency Modulation Strategy of Composite Energy Storage Based on Variable Filter Time Constant and Fuzzy Control. J. Shanghai Jiaotong Univ. 2025, 59, 1370–1382. [Google Scholar]
- Liu, J.; Zhu, S.; Liu, P.; Wu, P. Coordinated control strategy for wind turbine and energy storage equipment considering system frequency safety and stability constraints. Power Syst. Prot. Control 2024, 52, 73–84. [Google Scholar]
- Zhu, F.; Zhou, X.; Zhang, Y.; Xu, D.; Fu, J. A load frequency control strategy based on disturbance reconstruction for multi-area interconnected power system with hybrid energy storage system. Energy Rep. 2021, 7, 8849–8857. [Google Scholar] [CrossRef]
- Feng, Z.; Li, S.; Zhu, S.; Li, Z.; Bai, X. Frequency Regulation Signal Reduction Methods for Aluminum Smelters. J. Syst. Simul. 2020, 32, 2332–2340. [Google Scholar]
- Su, H.; Yang, S.; Duan, M.; Yang, Y. Sources-grid-load Cooperative Secondary Frequency Control Under Aluminum Smelter Loads Response. J. Harbin Univ. Sci. Technol. 2023, 28, 46–56. [Google Scholar]
- Liao, S.; Zhang, M.; Xu, J.; Li, J.; Wang, Y.; Ke, D.; Sun, Y.; Yu, J. Frequency Stability Control Method for Electrolytic Aluminum Participation in Power Grid Considering the Static Voltage Stability Constraints. Proc. CSEE 2022, 42, 6727–6740. [Google Scholar]
- Jiang, H.; Lin, J.; Song, Y. MPC-Based Frequency Control With Demand-Side Participation: A Case Study in an Isolated Wind-Aluminum Power System. IEEE Trans. Power Syst. 2015, 30, 3327–3337. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, H.; Wang, J.; Liu, W.; Yan, Z. System Optimization Scheduling Considering the Full Process of Electrolytic Aluminum Production and the Integration of Thermal Power and Energy Storage. Energies 2025, 18, 598. [Google Scholar] [CrossRef]
- Wen, Z.; Jiang, P.; Song, Z.; Li, L.; Jiang, Y.; Liang, T. Development status and progress of pumped storage in underground space of closed/abandoned mines. J. China Coal Soc. 2024, 49, 1358–1374. [Google Scholar]
- Gao, X.; Yuan, Z. Development of the underground reservoirs of pumped-storage hydropower and key hydraulics issues. J. Hydraul. Eng. 2023, 54, 1058–1069. [Google Scholar]
- Bao, P.; Wen, Z.; Cheng, D.; Liu, M. Hierarchical control of aluminum smelter loads for primary frequency support considering control cost. Int. J. Electr. Power Energy Syst. 2020, 122, 106202. [Google Scholar] [CrossRef]
- Huang, X.; Ge, S.; Yu, K. Power Loss Reduction Analysis Based on Load Features of Electrolytic Aluminum. Power Syst. Clean Energy 2017, 33, 77–81. [Google Scholar]
- Fang, F.; Liu, Y.; Wang, B. Optimal Load Allocation Strategy of Flywheel-Thermal Power Coordinated Secondary Frequency Regulation Based on Non-dominated Sorting Genetic Algorithm-II. Autom. Electr. Power Syst. 2024, 48, 79–88. [Google Scholar]















| d∆fh | ∆fh | ||||||
|---|---|---|---|---|---|---|---|
| NL | NM | NS | Z | PS | PM | PL | |
| NL | VB | M | B | VB | Z | Z | Z |
| NM | B | B | B | B | M | S | S |
| NS | S | M | B | B | S | S | S |
| Z | Z | Z | Z | Z | Z | Z | Z |
| PS | S | S | S | B | B | M | S |
| PM | S | S | M | B | B | B | B |
| PL | Z | Z | Z | VB | B | M | VB |
| d∆fh | ∆fh | |
| ≤0 | >0 | |
| ≤0 | λ | −λ |
| >0 | −λ | λ |
| Parameter | Symbol | Value | Unit |
|---|---|---|---|
| Thermal unit rated capacity | Pgen | 500 | MW |
| Equivalent inertia constant | H | 5.0 | s |
| Load damping factor | D | 1.0 | p.u./Hz |
| Reheater time constant | TRH | 10.0 | s |
| Governor time constant | TG | 0.08 | s |
| EES rated energy capacity | Erated | 0.5 | MWh |
| EES response time constant | TE | 0.1 | s |
| Pumped storage water inertia | TW | 1.0 | s |
| Pumped storage governor PID | Kp, Ki, Kd | 1.2, 0.05, 0 | - |
| SOC operational boundaries | Smin, Smax | 0.1, 0.9 | - |
| SOC optimal range | Slow, Shigh | 0.4, 0.6 | - |
| SOC sensitivity factors | α,β | 2.0, 3.0 | - |
| Frequency deadband | Δfdb | 0.03 | Hz |
| Normal regulation boundary | ΔfCES | 0.05 | Hz |
| Sub-emergency boundary | ΔfAL | 0.10 | Hz |
| Emergency limit | ΔfOVER | 0.20 | Hz |
| Initial filter time constant | TN0 | 10.0 | s |
| Fuzzy input/output universe | U | [−1, 1]/[0, 1] | - |
| H (s) | D (p.u.) | TN0 (s) | Max Δf (Hz) | ITAE Index | Stability |
|---|---|---|---|---|---|
| 3.0 | 1.0 | 10 | 0.048 | 2.54 | Robust performance |
| 5.0 | 0.8 | 10 | 0.032 | 1.95 | Stable recovery |
| 5.0 | 1.0 | 10 | 0.024 | 1.82 | Optimal Setting |
| 5.0 | 1.0 | 5 | 0.026 | 2.15 | High-freq chattering |
| 5.0 | 1.0 | 15 | 0.035 | 2.88 | Sluggish response |
| Control Scheme | Δf | ts (s) | Mp (Hz) | ITAE | SOC Range | MaxΔPPPS (p.u.) |
|---|---|---|---|---|---|---|
| Conventional Units Only | 0.195 | 45.2 | 0.195 | 14.52 | N/A | N/A |
| PPS-Only Participation | 0.155 | 32.8 | 0.155 | 9.92 | N/A | 0.045 |
| HESS (Fixed-K Adaptive) | 0.112 | 26.5 | 0.112 | 6.85 | [0.465, 0.500] | 0.040 |
| Proposed Symmetrical Strategy | 0.054 | 18.2 | 0.054 | 3.42 | [0.482, 0.500] | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Teng, W.; Li, X.; Lei, Y.; Mo, X.; Shan, Z.; Yuan, H.; Liu, G.; Luo, Z. Symmetrical Cooperative Frequency Control Strategy for Composite Energy Storage System with Electrolytic Aluminum Load. Symmetry 2026, 18, 299. https://doi.org/10.3390/sym18020299
Teng W, Li X, Lei Y, Mo X, Shan Z, Yuan H, Liu G, Luo Z. Symmetrical Cooperative Frequency Control Strategy for Composite Energy Storage System with Electrolytic Aluminum Load. Symmetry. 2026; 18(2):299. https://doi.org/10.3390/sym18020299
Chicago/Turabian StyleTeng, Weiye, Xudong Li, Yuanqing Lei, Xi Mo, Zuzhi Shan, Hai Yuan, Guichuan Liu, and Zhao Luo. 2026. "Symmetrical Cooperative Frequency Control Strategy for Composite Energy Storage System with Electrolytic Aluminum Load" Symmetry 18, no. 2: 299. https://doi.org/10.3390/sym18020299
APA StyleTeng, W., Li, X., Lei, Y., Mo, X., Shan, Z., Yuan, H., Liu, G., & Luo, Z. (2026). Symmetrical Cooperative Frequency Control Strategy for Composite Energy Storage System with Electrolytic Aluminum Load. Symmetry, 18(2), 299. https://doi.org/10.3390/sym18020299

