Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps
Abstract
1. Introduction
2. Preliminaries
- (i)
- is associative and commutative;
- (ii)
- is continuous;
- (iii)
- for all ;
- (iv)
- whenever and , and .
- (1)
- , ;
- (2)
- , for all (symmetry property);
- (3)
- , for all and .
3. Weak Cyclic Kannan Contractions
4. Cyclic Relatively Kannan Nonexpansive Mappings
4.1. Probabilistic Proximal Quasi-Normal Structure
- Relatively Kannan nonexpansive iffor all and . In the case that , then we say that is a Kannan nonexpansive map.
- Preserve distance if for all and with we have .
4.2. Application to Fixed Point Theory
5. More Results in CAT(0) Spaces
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schauder, J. Der Fixpunktsatz in Funktionalriiumen. Stud. Math. 1930, 2, 171–180. [Google Scholar] [CrossRef]
- Fan, K. Extensions of two fixed point theorems of F.E. Browder. Math. Z. 1969, 122, 234–240. [Google Scholar] [CrossRef]
- Eldred, A.A.; Kirk, W.A.; Veeramani, P. Proximal normal structure and relatively non-expansive mappings. Stud. Math. 2005, 171, 283–293. [Google Scholar] [CrossRef]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef]
- Petric, M.A. Best proximity point theorems for weak cyclic Kannan contractions. Filomat 2011, 25, 145–154. [Google Scholar] [CrossRef]
- Abkar, A.; Gabeleh, M. Proximal quasi-normal structure and a best proximity point theorem. J. Nonlinear Convex Anal. 2013, 14, 653–659. [Google Scholar]
- Gabeleh, M. Proximal quasi-normal structure in convex metric spaces. An. St. Univ. Ovidius Constanta 2014, 22, 45–58. [Google Scholar] [CrossRef]
- Ješić, S.N.; Nikolić, R.M.; Babačev, N.A. A Common Fixed Point Theorem in Strictly Convex Menger PM-spaces. Filomat 2014, 28, 735–743. [Google Scholar] [CrossRef]
- Menger, K. Statistical metric. Proc. Natl. Acad. Sci. USA 1942, 28, 535–537. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; Elsevier: New York, NY, USA, 1983. [Google Scholar]
- Sehgal, V.M.; Bharucha-Reid, A.T. Fixed Points of Contraction Mappings on Probabilistic Metric Spaces. Math. Syst. Theory 1972, 6, 97–102. [Google Scholar] [CrossRef]
- Egbert, R.J. Products and quotients of probabilistic metric spaces. Pac. J. Math. 1968, 24, 437–455. [Google Scholar] [CrossRef]
- Takahashi, W. A convexity in metric space and non-expansive mappings. Kodai Math. Semin. Rep. 1970, 20, 142–149. [Google Scholar]
- Hadžić, O. Common fixed point theorems in probabilistic metric spaces with a convex structure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 1987, 18, 165–178. [Google Scholar]
- Gabeleh, M.; Uyanık Ekici, E.; De La Sen, M. Noncyclic contractions and relatively nonexpansive mappings in strictly convex fuzzy metric spaces. AIMS Math. 2022, 7, 20230–20246. [Google Scholar] [CrossRef]
- Shayanpour, H.; Shams, M.; Nematizadeh, A. Some results on best proximity point on star-shaped sets in probabilistic Banach (Menger) spaces. Fixed Point Theory Appl. 2016, 2016, 13. [Google Scholar] [CrossRef]
- De la Sen, M.; Karapinar, E. Some results on best proximity points of cyclic contractions in probabilistic metric spaces. J. Funct. Spaces 2015, 2015, 470574. [Google Scholar] [CrossRef]
- Karaaslan, A.A.; Karakaya, V. Best proximity point theorems in non-Archimedean Menger probabilistic spaces. Kragujevac J. Math. 2024, 48, 331–343. [Google Scholar] [CrossRef]
- Wong, C. Close-to-normal structure and its applications. J. Funct. Anal. 1974, 16, 353–358. [Google Scholar] [CrossRef]
- Wong, C. On Kannan maps. Proc. Am. Math. Soc. 1975, 47, 105–111. [Google Scholar] [CrossRef]
- Espínola, R.; Nicolae, A. Mutually nearest and farthest points of sets and the drop theorem in geodesic spaces. Monatshefte Math. 2012, 165, 173–197. [Google Scholar] [CrossRef]
- Ahuja, G.C.; Narang, T.D.; Trehan, S. Best approximation on convex sets in a metric space. J. Approx. Theory 1974, 12, 94–97. [Google Scholar] [CrossRef][Green Version]
- Espínola, R.; Pia̧tek, B. Fixed point property and unbounded sets in CAT(0) spaces. J. Math. Anal. Appl. 2013, 408, 638–654. [Google Scholar] [CrossRef]
- Bruhat, F.; Tits, J. Groupes reductifs sur un corps local. Publ. Math. l’Institut Hautes Études Sci. 1972, 41, 5–251. [Google Scholar]
- Leustean, L. Nonexpansive iterations in uniformly convex W-hyperbolic spaces. Contemp. Math. 2010, 513, 193–209. [Google Scholar]
- Gabeleh, M.; Shahzad, N. Best proximity points, cyclic Kannan maps and geodesic metric spaces. J. Fixed Point Theory Appl. 2016, 18, 167–188. [Google Scholar]
- Fernandez-Leon, A. Existence and uniqueness of best proximity points in geodesic metric spaces. Nonlinear Anal. 2010, 73, 915–921. [Google Scholar]
- Espinola, R.; Fernandez-Leon, A. On best proximity points in metric and Banach spaces. Can. J. Math. 2011, 63, 533–550. [Google Scholar] [CrossRef]
- Fernandez-Leon, A.; Nicolae, A. Best proximity pair results for relatively nonexpansive mappings in geodesic spaces. Numer. Funct. Anal. Optim. 2014, 35, 1399–1418. [Google Scholar] [CrossRef]
- Espinola, R.; Lorenzo, P. Metric fixed point theory on hyperconvex spaces: Recent progress. Arab. J. Math. 2012, 1, 439–463. [Google Scholar] [CrossRef]
- Künzi, H.-P.A.; Yildiz, F. Convexity structures in T0-quasi-metric spaces. Topol. Appl. 2016, 200, 2–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabeleh, M.; Uyanık Ekici, E.; Aphane, M. Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps. Symmetry 2025, 17, 1549. https://doi.org/10.3390/sym17091549
Gabeleh M, Uyanık Ekici E, Aphane M. Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps. Symmetry. 2025; 17(9):1549. https://doi.org/10.3390/sym17091549
Chicago/Turabian StyleGabeleh, Moosa, Elif Uyanık Ekici, and Maggie Aphane. 2025. "Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps" Symmetry 17, no. 9: 1549. https://doi.org/10.3390/sym17091549
APA StyleGabeleh, M., Uyanık Ekici, E., & Aphane, M. (2025). Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps. Symmetry, 17(9), 1549. https://doi.org/10.3390/sym17091549

