Next Article in Journal
Broken Mirrors: Multiple Circular Polarization and Inversion in the Ground and Photoexcited States of Mirror-Symmetric Helical Poly(di-iso-alkylsilane)s in Achiral Molecular Solvents
Previous Article in Journal
The Cramér–Von Mises Statistic for Continuous Distributions: A Monte Carlo Study for Calculating Its Associated Probability
Previous Article in Special Issue
Analyzing Dynamics: Lie Symmetry Approach to Bifurcation, Chaos, Multistability, and Solitons in Extended (3 + 1)-Dimensional Wave Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Conformable Triple Laplace–Sumudu Transform and Two-Dimensional Fractional Partial Differential Equations

by
Shayea Aldossari
* and
Musa Rahamh GadAllah
Mathematics Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(9), 1543; https://doi.org/10.3390/sym17091543
Submission received: 6 August 2025 / Revised: 6 September 2025 / Accepted: 9 September 2025 / Published: 15 September 2025
(This article belongs to the Special Issue Symmetry in the Soliton Theory)

Abstract

In this work, we introduce the conformabletriple Laplace–Sumudu transform (CTLST), a novel integral transform designed to solve both linear and nonlinear conformable FPDEs. This new approach builds on the recent development of the triple Laplace–Sumudu transform and incorporates the conformable derivative to extend its applicability to fractional models. We first present the foundational definitions and key properties of the CTLST, followed by its application to a variety of two- and three-dimensional conformable FPDEs. The effectiveness of the proposed method is demonstrated through several examples, where exact and approximate solutions are derived, illustrative 3D plots are presented, and symmetry analysis is employed to verify the obtained results. The CTLST provides a promising analytical tool for tackling complex conformable FPDEs in mathematical physics and engineering.

1. Introduction

Fractional partial differential equations (FPDEs) have become a central topic of research in mathematics and applied sciences due to their ability to model complex systems with memory and hereditary properties [1]. Their applications span a broad range of fields, including fluid mechanics, physics, biology, chemistry, economics, electromagnetic theory, and signal processing [2].
Solution methods play a vital role in the analysis and classification of differential equations. Integral transforms such as the Laplace, Fourier, Mellin, Hankel, and Sumudu transforms are among the most powerful tools for solving both ordinary and partial differential equations [3,4,5]. However, when solutions are not expressible in Taylor series form or the Laplace transform becomes difficult to compute, alternative approaches are needed.
In response to such challenges, the conformable fractional derivative (CFD) was introduced as a more accessible form of fractional calculus [6]. Defined using a limit-based approach, the CFD has attracted attention for its simplicity and effectiveness in modeling and analysis across numerous disciplines [7].
The Laplace transform remains widely used for solving fractional differential equations (FDEs), including both exact and approximate solutions [8,9]. To further extend its applicability, the single conformable Laplace transform (SCLT) was introduced in [10] as a natural adaptation of the classical Laplace transform to conformable derivatives.
Subsequent advancements include numerical methods for time–space FPDEs involving the spectral fractional Laplacian [11], and the introduction of the conformable double Laplace transform (CDLT) for solving more complex fractional models [12]. In parallel, the double Sumudu and Laplace–Sumudu transforms have been successfully applied to wave equations and other partial differential equations [13,14,15,16].
More recently, the combination of conformable transforms with decomposition methods has been employed to solve nonlinear FPDEs [17,18], and the triple Laplace–Sumudu transform was introduced in [19] to handle heat and wave equations with boundary conditions. Another significant approach is Lie symmetry analysis, which is used to investigate the invariance properties of nonlinear FPDEs involving conformable fractional derivatives in both time and space. This technique has been applied to generalized forms of classical equations such as the Korteweg–de Vries, Burgers, and modified Burgers equations [20].
In this paper, we build upon these developments and introduce the CTLST, a new analytical tool designed to solve both linear and nonlinear conformable FPDEs. We present the foundational definitions of the conformable Laplace transform, the conformable Sumudu transform, and the proposed CTLST. We then establish the core properties of the CTLST and apply it to a range of fractional partial differential equations. Illustrative examples and 3D plots are included to demonstrate the effectiveness of the method.

2. Terminology and Properties

In this section, we review the definitions of key integral transforms used in this work, including the conformable Laplace transform, the conformable Sumudu transform, and the conformable double Laplace transform. We then introduce the CTLST, which plays a central role in our proposed methodology.
Before proceeding with these definitions, we recall the concept of a function of exponential order. A function g p μ μ , q η η is said to be of exponential order i with respect to p μ μ , and of order j with respect to q η η , if there exists a constant M > 0 such that for all p > S 1 and q > S 2 , the inequality
g p μ μ , q η η < M e i p μ μ + j q η η
holds [21].
Definition 1
(Definition 4 [22]). Let f be a continuous function on [ 0 , ) . The conformable Sumudu transform (CST) of f r δ δ is defined as
S r δ f r δ δ = 1 φ 0 e 1 φ r δ δ f r δ δ d δ r = F ( φ ) ,
where d δ r = r δ 1 d r , 0 < δ 1 , and φ C .
Definition 2.
Let g: [ 0 , ) R be a real-valued function. The conformable Laplace transform (CLT) of g p μ μ is given by
L p μ g p μ μ = 0 e θ 1 p μ μ g p μ μ d p = G ( θ 1 )
for all values of θ 1 C , provided the integral exists.
Definition 3
(Definition 5 [21]). Let g p μ μ , q η η be a piecewise continuous function on [ 0 , ) × [ 0 , ) and of exponential order. The CDLT is defined as
L p μ L q η g p μ μ , q η η = 0 0 e θ 1 p μ μ θ 2 q η η g p μ μ , q η η d p d q = G ( θ 1 , θ 2 ) ,
where 0 < μ , η 1 and θ 1 , θ 2 C .
We now introduce the definition of the conformable triple Laplace–Sumudu transform (CTLST), along with its inverse.
Definition 4.
Let Φ p μ μ , q η η , r δ δ be a piecewise continuous function of exponential order. The conformable triple Laplace–Sumudu transform (CTLST), denoted by L p μ L q η S r δ , is defined as
L p μ L q η S r δ Φ p μ μ , q η η , r δ δ = 1 φ 0 0 0 e θ 1 p μ μ θ 2 q η η 1 φ r δ δ × Φ p μ μ , q η η , r δ δ d p d q d r = Φ ( θ 1 , θ 2 , φ ) ,
where p μ μ > 0 , q η η > 0 , r δ δ > 0 , θ 1 , θ 2 , φ C , and μ , η , δ ( 0 , 1 ] .
Definition 5.
The inverse conformable triple Laplace–Sumudu transform (ICTLST), denoted by L p 1 L q 1 S r 1 , of a function Φ θ 1 , θ 2 , φ is defined by
L p 1 L q 1 S r 1 Φ θ 1 , θ 2 , φ = 1 2 π i ε 2 i ε 1 + i e θ 1 p μ μ d θ 1 × 1 2 π i ε 2 i ε 1 + i e θ 2 q η η d θ 2 × 1 2 π i 1 φ ε 2 i ε 1 + i e 1 φ r δ δ d φ = Φ p μ μ , q η η , r δ δ .
Now, we give the definitions of the conformable partial fractional derivatives and apply the CTLST to the partial derivatives of the function Φ p μ μ , q η η , r δ δ . Also, we establish several key operational properties of the transform.
Definition 6.
Let Φ p μ μ , q η η , r δ δ : R + × R + × R + R be a function. Then the conformable partial fractional derivatives of the order μ , η , and δ of the function Φ are defined by
μ Φ p μ μ , q η η , r δ δ p μ = lim ν 0 Φ p μ μ + ν p 1 μ , q η η , r δ δ Φ p μ μ , q η η , r δ δ ν , η Φ p μ μ , q η η , r δ δ q η = lim κ 0 Φ p μ μ , q η η + κ q 1 η , r δ δ Φ p μ μ , q η η , r δ δ κ , δ Φ p μ μ , q η η , r δ δ r δ = lim σ 0 Φ p μ μ , q η η , r δ δ + σ r 1 δ Φ p μ μ , q η η , r δ δ σ ,
where 0 < μ , η , δ 1 , and p μ μ , q η η , r δ δ > 0
Theorem 1.
Let Φ p μ μ , q η η , r δ δ be a differentiable function at p μ μ , q η η , r δ δ > 0 . Then
μ p μ Φ p μ μ , q η η , r δ δ = p μ + 1 Φ p μ μ , q η η , r δ δ p , η q η Φ p μ μ , q η η , r δ δ = q η + 1 Φ p μ μ , q η η , r δ δ q , δ r δ Φ p μ μ , q η η , r δ δ = r δ + 1 Φ p μ μ , q η η , r δ δ r .
Definition 6 and Theorem 1 are extensions of Definition 2 and Theorem 1 in [23]. For further details, the reader is referred to [24].
Theorem 2.
Let
L p μ L q η S r δ Φ p μ μ , q η η , r δ δ = Φ θ 1 , θ 2 , φ
for 0 < μ , η , δ 1 . Then the CTLST of the functions μ Φ p μ , η Φ q η , δ Φ r δ , 2 μ Φ p 2 μ , 2 η Φ q 2 η , and 2 δ Φ r 2 δ are given by the following identities:
L p μ L q η S r δ μ p μ Φ p μ μ , q η η , r δ δ = θ 1 Φ θ 1 , θ 2 , φ L q η S r δ Φ 0 , q η η , r δ δ ,
L p μ L q η S r δ η q η Φ p μ μ , q η η , r δ δ = θ 2 Φ θ 1 , θ 2 , φ L p μ S r δ Φ p μ μ , 0 , r δ δ ,
L p μ L q η S r δ δ r δ Φ p μ μ , q η η , r δ δ = 1 φ Φ θ 1 , θ 2 , φ 1 φ L p μ L q η Φ p μ μ , q η η , 0 ,
L p μ L q η S r δ 2 μ p 2 μ Φ p μ μ , q η η , r δ δ = θ 1 2 Φ θ 1 , θ 2 , φ θ 1 L q η S r δ Φ 0 , q η η , r δ δ L q η S r δ Φ 0 , q η η , r δ δ ,
L p μ L q η S r δ 2 η q 2 η Φ p μ μ , q η η , r δ δ = θ 2 2 Φ θ 1 , θ 2 , φ θ 2 L p μ S r δ Φ p μ μ , 0 , r δ δ L p μ S r δ Φ p μ μ , 0 , r δ δ ,
L p μ L q η S r δ 2 δ r 2 δ Φ p μ μ , q η η , r δ δ = 1 φ 2 Φ θ 1 , θ 2 , φ 1 φ 2 L p μ L q η Φ p μ μ , q η η , 0 1 φ L p μ L q η Φ p μ μ , q η η , 0 .
Proof. 
The proof is an extension of Theorem 1 in [21]. Here, we prove (6) and (9), and leave the remaining identities to the reader. Starting from the definition of the CTLST, we have
L p μ L q η S r δ μ p μ Φ p μ μ , q η η , r δ δ = 1 φ 0 0 0 e θ 1 p μ μ θ 2 q η η 1 φ r δ δ μ p μ Φ p μ μ , q η η , r δ δ d p d q d r = 0 e θ 2 q η η d q × 1 φ 0 e 1 φ r δ δ d r 0 e θ 1 p μ μ μ p μ Φ p μ μ , q η η , r δ δ d p .
To evaluate the inner integral, we use integration by parts, with the assumptions u = e θ 1 p μ μ and d v = μ Φ p μ p μ μ , q η η , r δ δ d p . Thus,
L p μ L q η S r δ μ Φ p μ p μ μ , q η η , r δ δ = 0 e θ 2 q η η d q × 1 φ 0 e 1 φ r δ δ d r × θ 1 Φ 0 , q η η , r δ δ + θ 1 2 0 Φ p μ μ , q η η , r δ δ d p = θ 1 Φ θ 1 , θ 2 , φ L q η S r δ Φ 0 , q η η , r δ δ .
To prove (9), we apply the same technique recursively:
L p μ L q η S r δ 2 μ p 2 μ Φ p μ μ , q η η , r δ δ = L p μ L q η S r δ μ p μ μ p μ Φ p μ μ , q η η , r δ δ = θ 1 L p μ L q η S r δ μ p μ Φ θ 1 , θ 2 , φ θ 1 L p μ L q η S r δ L q η S r δ Φ 0 , q η η , r δ δ = θ 1 2 Φ θ 1 , θ 2 , φ θ 1 L q η S r δ Φ 0 , q η η , r δ δ L q η S r δ Φ 0 , q η η , r δ δ .
Theorem 3.
Let Φ p μ μ , q η η , r δ δ , where μ , η , δ ( 0 , 1 ] , be a real-valued piecewise continuous function and of exponential order. If L p μ L q η S r δ Φ p μ μ , q η η , r δ δ = Φ θ 1 , θ 2 , φ and m Z + , then the CTLST of conformable partial derivatives of the order μ m , η m , and δ m is given by
L p μ L q η S r δ μ m p μ m Φ p μ μ , q η η , r δ δ = θ 1 m Φ θ 1 , θ 2 , φ k = 0 m 1 θ 1 m 1 k L q η S r δ k p k Φ 0 , q η η , r δ δ ,
L p μ L q η S r δ η m q η m Φ p μ μ , q η η , r δ δ = θ 2 m Φ θ 1 , θ 2 , φ k = 0 m 1 θ 2 m 1 k L p μ S r δ k q k Φ p μ μ , 0 , r δ δ ,
L p μ L q η S r δ δ m r δ m Φ p μ μ , q η η , r δ δ = 1 φ m Φ θ 1 , θ 2 , φ k = 0 m 1 φ m + k L p μ L q η k r k Φ p μ μ , q η η , 0 .
Proof. 
The proof is a generalization of the proof of Theorem 2 and the proofs of Theorem 1 in [19] and Theorem 1 in [21]. □
Theorem 4.
Let Φ and Θ be piecewise continuous functions on the interval [ 0 , ) × [ 0 , ) × [ 0 , ) and of exponential order. If
L p μ L q η S r δ Φ p μ μ , q η η , r δ δ = Φ θ 1 , θ 2 , φ
and
L p μ L q η S r δ Θ p μ μ , q η η , r δ δ = Θ θ 1 , θ 2 , φ ,
where μ , η , δ ( 0 , 1 ] , and a 1 and a 2 are constants, then the CTLST of the following functions is
  • L p μ L q η S r δ a 1 Φ p μ μ , q η η , r δ δ + a 2 Θ p μ μ , q η η , r δ δ = a 1 L p μ L q η S r δ Φ p μ μ , q η η , r δ δ + a 2 L p μ L q η S r δ Θ p μ μ , q η η , r δ δ ,
  • L p μ L q η S r δ ζ = ζ θ 1 θ 2 , where ζ is constant,
  • L p μ L q η S r δ p μ μ k q η η m r δ δ n = φ n k ! m ! n ! θ 1 k + 1 θ 2 m + 1 , where k , m , n are positive integers,
  • L p μ L q η S r δ e b 1 p μ μ + b 2 q η η + b 3 r δ δ = 1 ( θ 1 b 1 ) ( θ 2 b 2 ) ( φ b 3 ) ,
  • L p μ L q η S r δ e i b 1 p μ μ + b 2 q η η + b 3 r δ δ
    = θ 1 θ 2 θ 1 φ b 2 b 3 θ 2 φ b 1 b 3 b 1 b 2 + i θ 1 θ 2 φ b 3 + θ 1 b 2 + θ 1 b 1 φ b 1 b 2 b 3 ( θ 1 2 + b 1 2 ) ( θ 2 2 + b 2 2 ) ( 1 + φ 2 b 3 2 ) ,
  • L p μ L q η S r δ sin b 1 p μ μ + b 2 q η η + b 3 r δ δ = θ 1 θ 2 φ b 3 + θ 1 b 2 + θ 2 b 1 φ b 3 b 2 b 1 ( θ 1 2 + b 1 2 ) ( θ 2 2 + b 2 ) ( 1 + φ 2 b 3 2 ) ,
  • L p μ L q η S r δ cos b 1 p μ μ + b 2 q η η + b 3 r δ δ = θ 1 θ 2 + θ 1 φ b 2 b 3 + θ 2 φ b 1 b 3 + b 1 b 2 ( θ 1 2 b 1 2 ) ( θ 2 2 b 2 ) ( 1 φ 2 b 3 2 ) ,
  • L p μ L q η S r δ sinh b 1 p μ μ + b 2 q η η + b 3 r δ δ = θ 1 θ 2 φ b 3 + θ 1 b 2 + θ 2 b 1 + φ b 3 b 2 b 1 ( θ 1 2 b 1 2 ) ( θ 2 2 b 2 ) ( 1 φ 2 b 3 2 ) ,
  • L p μ L q η S r δ cosh b 1 p μ μ + b 2 q η η + b 3 r δ δ = θ 1 θ 2 + θ 1 φ b 2 b 3 + θ 2 φ b 1 b 3 + b 1 b 2 ( θ 1 2 b 1 2 ) ( θ 2 2 b 2 ) ( 1 φ 2 b 3 2 ) .
Proof. 
From the definition of the CTLST, the proof of the first point is clear. For the proof of 2 ,
L p μ L q η S r δ ζ = 1 φ 0 0 0 ζ e θ 1 p μ μ θ 2 q η η 1 φ r δ δ d p d q d r = 0 e θ 1 p μ μ d p 0 e θ 2 q η η d q ζ φ 0 e 1 φ r δ δ d r = ζ θ 1 θ 2 .
When the CTLST is applied on Φ p μ μ , q η η , r δ δ = p μ μ k q η η m r δ δ n , it gives the following:
L p μ L q η S r δ p μ μ k q η η m r δ δ n = 1 φ 0 0 0 e θ 1 p μ μ θ 2 q η η 1 φ r δ δ × p μ μ k q η η m r δ δ n d p d q d r = 0 e θ 1 p μ μ p μ μ k d p × 0 e θ 2 q η η q η η m d q × 1 φ 0 e 1 φ r δ δ r δ δ n d r = φ n k ! m ! n ! θ 1 k + 1 θ 2 m + 1 ,
which is the proof of 3 . Also, when Φ p μ μ , q η η , r δ δ = e b 1 p μ μ + b 2 q η η + b 3 r δ δ , we get the following:
L p μ L q η S r δ e b 1 p μ μ + b 2 q η η + b 3 r δ δ = 1 φ 0 0 0 e θ 1 p μ μ θ 2 q η η 1 φ r δ δ × e b 1 p μ μ + b 2 q η η + b 3 r δ δ d p d q d r = 0 e ( θ 1 + b 1 ) p μ μ d p 0 e ( θ 2 + b 2 ) q η η d q × 1 φ 0 e ( 1 φ + b 3 ) r δ δ d r = 1 θ 1 b 1 1 θ 2 b 2 1 1 φ b 3 = 1 θ 1 b 1 θ 2 b 2 1 φ b 3 .
By the same way of proving 3 and 4 , we can prove 5 , 6 , and 7 , ; we leave these for the reader.
For 8 , we apply the CTLST on
Φ p μ μ , q η η , r δ δ = sinh b 1 p μ μ + b 2 q η η + b 3 r δ δ = e b 1 p μ μ + b 2 q η η + b 3 r δ δ e b 1 p μ μ + b 2 q η η + b 3 r δ δ 2 ,
so we get
L p μ L q η S r δ sinh b 1 p μ μ + b 2 q η η + b 3 r δ δ = 1 2 φ 0 0 0 e θ 1 + b 1 p μ μ + θ 2 + b 2 q η η + 1 φ + b 3 r δ δ d p d q d r 0 0 0 e θ 1 b 1 p μ μ + θ 2 b 2 q η η + 1 φ b 3 r δ δ d p d q d r = θ 1 b 2 + θ 2 b 1 + θ 1 θ 2 φ b 3 + b 1 b 2 b 3 φ θ 1 2 b 1 2 θ 2 2 b 2 2 1 φ 2 b 3 2 .
By the same method, we can prove 9 .

3. Solving Two-Dimensional Fractional Partial Differential Equations Using the CTLST

In this section, we demonstrate the effectiveness of the triple Laplace–Sumudu transform (CTLST) technique for solving a class of two-dimensional time-fractional partial differential equations. This approach integrates the Laplace and Sumudu transforms into a triple structure tailored to fractional differential operators in multiple variables, offering a systematic way to handle linear and nonlinear terms within a unified transform domain.
We consider the following nonlinear time-fractional partial differential equation, as studied in [25]:
k δ r k δ Φ p μ μ , q η η , r δ δ + R Φ p μ μ , q η η , r δ δ + N Φ p μ μ , q η η , r δ δ = f p μ μ , q η η , r δ δ ,
subject to the initial condition
k δ 1 r k δ 1 Φ p μ μ , q η η , 0 = f k δ 1 p μ μ , q η η , 0 ,
where m 1 < δ m , R is a linear differential operator, N is a nonlinear operator, f is a source term, and k = 1 , 2 , 3 , .
Step 1: Apply the CTLST to both sides of Equation (15). This results in the transformed form
L p μ L q η S r δ k δ r k δ Φ p μ μ , q η η , r δ δ + L p μ L q η S r δ R Φ p μ μ , q η η , r δ δ + L p μ L q η S r δ N Φ p μ μ , q η η , r δ δ = L p μ L q η S r δ f p μ μ , q η η , r δ δ .
Step 2: By applying the operational rules of the CTLST, we obtain
1 φ δ Φ ( θ 1 , θ 2 , φ ) k = 0 m 1 1 φ δ k L p μ L q η k δ r k δ Φ p μ μ , q η η , 0 + L p μ L q η S r δ R Φ + L p μ L q η S r δ N Φ = L p μ L q η S r δ f .
Step 3: Substituting the initial condition (16) into (18) leads to
Φ ( θ 1 , θ 2 , φ ) = F ( θ 1 , θ 2 , φ ) + φ δ k = 0 m 1 1 φ δ k L p μ L q η k δ r k δ Φ · , · , 0 φ δ L p μ L q η S r δ R Φ φ δ L p μ L q η S r δ N Φ .
Step 4: Applying the inverse CTLST to (19), we obtain
L p 1 L q 1 S r 1 Φ θ 1 , θ 2 , φ = Ψ p μ μ , q η η , r δ δ + L p 1 L q 1 S r 1 φ δ k = 0 m 1 1 φ δ k L p μ L q η k δ r k δ Φ p μ μ , q η η , 0 L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ R Φ p μ μ , q η η , r δ δ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ N Φ p μ μ , q η η , r δ δ .
Assume that the solution Φ can be expressed as a series:
Φ p μ μ , q η η , r δ δ = k = 0 Φ k p μ μ , q η η , r δ δ .
Then the nonlinear term N Φ can be decomposed as
N Φ p μ μ , q η η , r δ δ = k = 0 G k ,
where G k are the Adomian polynomials given by
G 0 = 1 0 ! d 0 d λ 0 N k = 0 0 λ k Φ k λ = 0 = N ( Φ 0 ) , G 1 = 1 1 ! d 1 d λ 1 N k = 0 1 λ k Φ k λ = 0 = Φ 1 N ( Φ 0 ) , G 2 = 1 2 ! d 2 d λ 2 N k = 0 2 λ k Φ k λ = 0 = Φ 2 N ( Φ 0 ) + Φ 1 2 2 ! N ( Φ 0 ) ,
Substituting (21) and (22) into (20) gives
k = 0 Φ k p μ μ , q η η , r δ δ = Ψ p μ μ , q η η , r δ δ + L p 1 L q 1 S r 1 φ δ k = 0 m 1 1 φ δ k L p μ L q η k δ r k δ Φ p μ μ , q η η , 0 L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ R Φ p μ μ , q η η , r δ δ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ N k = 0 G k .
The recursive relations are then given by
Φ 0 p μ μ , q η η , r δ δ = F p μ μ , q η η , r δ δ ,
and for k 0 ,
Φ k + 1 p μ μ , q η η , r δ δ = L p 1 L q 1 S r 1 L p μ L q η Φ p μ μ , q η η , 0 + L p 1 L q 1 S r 1 φ δ k = 0 m 1 1 φ δ k L p μ L q η k δ r k δ Φ p μ μ , q η η , 0 L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ R Φ p μ μ , q η η , r δ δ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r δ N k = 0 G k .
Finally, the approximate solution of (15) is given by the infinite series
Φ p μ μ , q η η , r δ δ = k = 0 Φ k p μ μ , q η η , r δ δ = Φ 0 + Φ 1 + Φ 2 + Φ 3 + .
This method efficiently constructs a series solution for the given FPDE, capturing both linear and nonlinear behaviors across multiple fractional dimensions through an integrated transform-decomposition framework.

4. Illustrative Examples

In this section, we apply the CTLST to solve linear and nonlinear fractional partial differential equations. The first example is taken from [26], and the equation is a Poisson partial differential equation. The second example is conformable Laplace partial differential equation [26], and the third example is a conformable nonlinear wave equation [27].
Example 1.
We consider the following Poisson partial differential equation:
2 δ r 2 δ Φ p μ μ , q η η , r δ δ + 2 μ p 2 μ Φ p μ μ , q η η , r δ δ + 2 η q 2 η Φ p μ μ , q η η , r δ δ = 2 sin p μ μ cos q η η sinh 2 r δ δ ,
with the initial and boundary conditions
Φ p μ μ , q η η , 0 = 0 , δ Φ p μ μ , q η η , 0 r δ = 2 sin p μ μ cos q η η ,
Φ 0 , q η η , r δ δ = 0 , μ Φ 0 , q η η , r δ δ p μ = cos q η η sinh 2 r δ δ ,
Φ p μ μ , 0 , r δ δ = sin p μ μ sinh 2 r δ δ , δ Φ p μ μ , 0 , r δ δ q δ = 0 .
First step: Applying the CTLST on both sides of (25) gives the following:
L p μ L q η S r φ 2 δ r 2 δ Φ p μ μ , q η η , r δ δ + L p μ L q η S r φ 2 μ p 2 μ Φ p μ μ , q η η , r δ δ + L p μ L q η S r φ 2 η q 2 η Φ p μ μ , q η η , r δ δ = 2 L p μ L q η S r φ sin p μ μ cos q η η sinh 2 r δ δ .
Second step: From the derivative properties of the CTLST, we find that
1 φ 2 Φ θ 1 , θ 2 , φ 1 φ 2 L p μ L q η Φ p μ μ , q η η , 0 1 φ L p μ L q η r Φ p μ μ , q η η , 0 + θ 1 2 Φ θ 1 , θ 2 , φ θ 1 L q η S r φ Φ 0 , q η η , r δ δ L q η S r φ p Φ 0 , q η η , r δ δ + θ 2 2 Φ θ 1 , θ 2 , φ θ 2 L p μ S r φ Φ p μ μ , 0 , r δ δ L p μ S r φ q Φ p μ μ , 0 , r δ δ = 4 θ 2 φ 1 + θ 1 2 1 + θ 2 2 1 4 φ 2 .
When we apply the CTLST on the initial and boundary conditions, we get following:
L p μ L q η Φ p μ μ , q η η , 0 = 0 ,
L p μ L q η r Φ p μ μ , q η η , 0 = L p μ L q η 2 sin p μ μ cos q η η = 2 θ 2 1 + θ 1 2 1 + θ 2 2 ,
L q η S r φ Φ 0 , q η η , r δ δ = 0 ,
L q η S r φ p Φ 0 , q η η , r δ δ = L q η S r φ cos q η η sinh 2 r δ δ = 2 θ 2 φ 1 + θ 2 2 1 4 φ 2 ,
L p μ S r φ Φ p μ μ , 0 , r δ δ = L p μ S r φ sin p μ μ sinh 2 r δ δ = 2 φ 1 + θ 1 2 1 4 φ 2
L p μ S r φ δ q δ Φ p μ μ , 0 , r δ δ = 0 .
By substituting (31), (32), (33), (34), (35), and (36) into (30), we get
1 φ 2 + θ 1 2 + θ 2 2 Φ θ 1 , θ 2 , φ = 2 θ 2 φ 1 + θ 1 2 1 + θ 2 2 + 2 θ 2 φ 1 + θ 2 2 1 4 φ 2 + 2 θ 2 φ 1 + θ 1 2 1 4 φ 2 + 4 θ 2 φ 1 + θ 1 2 1 + θ 2 2 1 4 φ 2 ,
by arranging the above equation, we find
1 + φ 2 θ 1 2 + φ 2 θ 2 2 φ 2 Φ θ 1 , θ 2 , φ = 2 θ 2 1 + φ 2 θ 1 2 + φ 2 θ 2 2 φ 1 + θ 1 2 1 + θ 2 2 1 4 φ 2 ,
and so
Φ θ 1 , θ 2 , φ = 2 φ θ 2 1 + θ 1 2 1 + θ 2 2 1 4 φ 2 .
Third step: In this step, we apply the inverse of the CTLST to (39):
L p 1 L q 1 S r 1 Φ θ 1 , θ 2 , φ = L p 1 L q 1 S r 1 2 φ θ 2 1 + θ 1 2 1 + θ 2 2 1 4 φ 2 ,
and from Theorem (4), the inverse of the CTLST in (40) becomes
Φ p μ μ , q η η , r δ δ = sin p μ μ cos q η η sinh 2 r δ δ .
Figure 1 illustrates the 3D plots of the approximation solutions of Φ p μ μ , q η η , r δ δ at p = 1 ,   μ = 1 , and different values of δ and η. The exact solution of (25) is when μ = η = δ = 1 in (41), and it is
Φ p , q , r = sin p cos q sinh 2 r .
Example 2.
Consider the following conformable Laplace partial differential equation, Example 4 in [26]:
2 δ r 2 δ Φ p μ μ , q η η , r δ δ + 2 μ p 2 μ Φ p μ μ , q η η , r δ δ + 2 η q 2 η Φ p μ μ , q η η , r δ δ = 0 ,
subject to the initial and boundary conditions
Φ p μ μ , q η η , 0 = 0 , δ Φ p μ μ , q η η , 0 r δ = 2 sin p μ μ sin q η η ,
Φ 0 , q η η , r δ δ = 0 , μ Φ 0 , q η η , r δ δ p μ = sin q η η sinh 2 r δ δ ,
Φ p μ μ , 0 , r δ δ = 0 , δ Φ p μ μ , 0 , r δ δ q δ = sin p μ μ sinh 2 r δ δ .
First step: Applying the CTLST on both sides of (42) leads to
L p μ L q η S r φ 2 δ r 2 δ Φ p μ μ , q η η , r δ δ = L p μ L q η S r φ 2 μ p 2 μ Φ p μ μ , q η η , r δ δ L p μ L q η S r φ 2 η q 2 η Φ p μ μ , q η η , r δ δ .
Second step: By applying the properties of the CTLST, Theorem , we find that
1 φ 2 Φ θ 1 , θ 2 , φ 1 φ 2 L p μ L q η Φ p μ μ , q η η , 0 1 φ L p μ L q η r Φ p μ μ , q η η , 0 = θ 1 2 Φ θ 1 , θ 2 , φ θ 1 L q η S r φ Φ 0 , q η η , r δ δ L q η S r φ p Φ 0 , q η η , r δ δ θ 2 2 Φ θ 1 , θ 2 , φ θ 2 L p μ S r φ Φ p μ μ , 0 , r δ δ L p μ S r φ q Φ p μ μ , 0 , r δ δ .
Applying the transform on the initial and boundary conditions leads to
L p μ L q η Φ p μ μ , q η η , 0 = 0 ,
L p μ L q η r Φ p μ μ , q η η , 0 = L p μ L q η 2 sin p μ μ sin q η η = 2 φ 1 + θ 1 2 1 + θ 2 2
L q η S r φ Φ 0 , q η η , r δ δ = 0 ,
L q η S r φ μ p μ Φ 0 , q η η , r δ δ = L q η S r φ sin q η η sinh 2 r δ δ = 2 φ 1 + θ 2 2 1 2 φ 2 ,
Φ p μ μ , 0 , r δ δ = 0 ,
L p μ S r φ δ q δ Φ p μ μ , 0 , r δ δ = L p μ S r φ sin p μ μ sinh 2 r δ δ = 2 φ 1 + θ 1 2 1 2 φ 2 .
After substituting (48), (49), (50), (51), (52), and (53) into (47), we get
1 φ 2 + θ 1 2 + θ 2 2 Φ θ 1 , θ 2 , φ = 2 φ 1 + θ 1 2 1 + θ 2 2 + 2 φ 1 + θ 2 2 1 2 φ 2 + 2 φ 1 + θ 1 2 1 2 φ 2 ,
By rearranging the above equation, we have
1 + φ 2 θ 1 2 + φ 2 θ 2 2 φ 2 Φ θ 1 , θ 2 , φ = 2 1 + φ 2 θ 1 2 + φ 2 θ 2 2 φ 1 + θ 1 2 1 + θ 2 2 1 2 φ 2 ,
and simplifying Equation (55) leads to
Φ θ 1 , θ 2 , φ = 2 φ 1 + θ 1 2 1 + θ 2 2 1 2 φ 2 .
Third step: Applying the inverse of the CTLST of (56) gives
L p 1 L q 1 S r 1 Φ θ 1 , θ 2 , φ = L p 1 L q 1 S r 1 2 φ 1 + θ 1 2 1 + θ 2 2 1 2 φ 2 ,
and hence the conformable solution becomes
Φ p μ μ , q η η , r δ δ = sin p μ μ sin q η η sinh 2 r δ δ .
Figure 2 presents the 3D surface plots of the approximate solutions of Φ p μ μ , q η η , r δ δ evaluated at p = 1 and μ = 1 , while varying the values of δ and η. The exact solution of (42) is given by
Φ p , q , r = sin p cos q sinh 2 r ,
when μ = η = δ = 1 in (58).
Example 3.
Consider the following two-dimensional conformable nonlinear wave equation, Example 7 in [27]:
2 δ r 2 δ Φ p μ μ , q η η , r δ δ = μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ μ + η p μ q η δ p δ Φ η q η Φ Φ p μ μ , q η η , r δ δ ,
with the initial condition
Φ p μ μ , q η η , 0 = e p μ μ q η η , δ r δ Φ p μ μ , q η η , 0 = e p μ μ q η η .
To find solutions for the equation, we implement the following steps:
First step: Apply the CTLST on both sides of (59), so we get
L p μ L q η S r φ 2 δ r 2 δ Φ p μ μ , q η η , r δ δ = L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
Second step: By using the partial derivatives properties of the CTLST, we find
1 φ 2 Φ θ 1 , θ 2 , φ 1 φ 2 L p μ L q η Φ p μ μ , q η η , 0 1 φ L p μ L q η r Φ p μ μ , q η η , 0 = L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
By applying the transform to the initial conditions, we get
L p μ L q η Φ p μ μ , q η η , 0 = L p μ L q η e p μ μ q η η = 1 1 θ 1 1 θ 2 ,
L p μ L q η r Φ p μ μ , q η η , 0 = L p μ L q η e p μ μ q η η = 1 1 θ 1 1 θ 2 .
After substituting (63) and (64) into (62), we obtain
1 φ 2 Φ θ 1 , θ 2 , φ 1 φ 2 1 1 θ 1 1 θ 2 1 φ 1 1 θ 1 1 θ 2 = L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
By arranging the terms of (65), the function becomes
Φ θ 1 , θ 2 , φ = 1 1 θ 1 1 θ 2 + φ 1 θ 1 1 θ 2 + φ 2 L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ φ 2 L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ φ 2 L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
Third step: Apply the inverse of the CTLST to (66) to get the following function:
L p 1 L q 1 S r 1 Φ θ 1 , θ 2 , φ = L p 1 L q 1 S r 1 1 1 θ 1 1 θ 2 + φ 1 θ 1 1 θ 2 + L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
From Theorem 4, we find that
Φ p μ μ , q η η , r δ δ = e p μ μ q η η + r δ δ e p μ μ q η η + L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ μ + η p μ q η 2 δ p 2 δ Φ 2 η q 2 η Φ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ μ + η p μ q η δ p δ Φ η q η Φ L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ Φ p μ μ , q η η , r δ δ .
Suppose that
Φ p μ μ , q η η , r δ δ = k = 0 Φ k p μ μ , q η η , r δ δ .
When we apply the fractional derivatives, which are in (59) on (69), we get
2 δ Φ p 2 δ 2 η Φ q 2 η = k = 0 G k , δ Φ p δ η Φ q η = k = 0 B k ,
where G k and B k are called Adomian polynomials, which can be calculated as follows:
G k = 1 k ! λ k i = 0 λ i Φ i λ = 0 , k = 0 , 1 , 2 ,
and
B k = 1 k ! λ k i = 0 λ i Φ i λ = 0 , k = 0 , 1 , 2 , ,
where
G 0 = Φ 0 p μ μ p μ μ Φ 0 q η η q η η , G 1 = Φ 0 p μ μ p μ μ Φ 1 q η η q η η + Φ 1 p μ μ p μ μ Φ 0 q η η q η η , G 2 = Φ 0 p μ μ p μ μ Φ 2 q η η q η η + Φ 1 p μ μ p μ μ Φ 1 q η η q η η + Φ 2 p μ μ p μ μ Φ 0 q η η q η η ,
and
B 0 = Φ 0 p μ μ Φ 0 q η η , B 1 = Φ 0 p μ μ Φ 1 q η η + Φ 1 p μ μ Φ 0 q η η , B 2 = Φ 0 p μ μ Φ 2 q η η + Φ 1 p μ μ Φ 1 q η η + Φ 2 p μ μ Φ 0 q η η ,
After substituting (69) and (70) into (68), one can get
k = 0 Φ k p μ μ , q η η , r δ δ = e p μ μ q η η + r δ δ e p μ μ q η η + L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ k = 0 G k L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ k = 0 B k L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ k = 0 Φ k .
The recursive relations are
Φ 0 p μ μ , q η η , r δ δ = e p μ μ q η η + r δ δ e p μ μ q η η ,
Φ k + 1 p μ μ , q η η , r δ δ = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ G 0 L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ B 0 L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ Φ 0 .
When k = 0 , then
Φ 1 p μ μ , q η η , r δ δ = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ ( Φ 0 ) p μ μ p μ μ ( Φ 0 ) q η η q η η p μ μ q η η p μ μ q η η ( Φ 0 ) p μ μ ( Φ 0 ) q η η p μ μ q η η Φ 0 = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ q η η 2 e p μ μ q η η + q η η 2 r δ δ e p μ μ q η η p μ μ 2 e p μ μ q η η + p μ μ 2 r δ δ e p μ μ q η η p μ μ q η η L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ p μ μ q η η q η η e p μ μ q η η + q η η r δ δ e p μ μ q η η p μ μ e p μ μ q η η + p μ μ r δ δ e p μ μ q η η p μ μ q η η L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ e p μ μ q η η + r δ δ e p μ μ q η η , = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ 0 e p μ μ q η η + r δ δ e p μ μ q η η = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ e p μ μ q η η + r δ δ e p μ μ q η η = L p 1 L q 1 S r 1 φ 2 1 θ 1 1 θ 2 + φ 3 1 θ 1 1 θ 2 ,
and so
Φ 1 p μ μ , q η η , r δ δ = 1 2 r δ δ 2 e p μ μ q η η + 1 6 r δ δ 3 e p μ μ q η η .
At k = 1 , we get
Φ 2 p μ μ , q η η , r δ δ = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ ( Φ 0 ) p μ μ p μ μ ( Φ 1 ) q η η q η η + ( Φ 1 ) p μ μ p μ μ ( Φ 0 ) q η η q η η p μ μ q η η p μ μ q η η ( Φ 0 ) p μ μ ( Φ 1 ) q η η + ( Φ 1 ) p μ μ ( Φ 0 ) q η η p μ μ q η η Φ 1 = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ q η η 2 e p μ μ q η η + q η η 2 r δ δ e p μ μ q η η 1 2 p μ μ 2 r δ δ 2 e p μ μ q η η + 1 6 p μ μ 2 r δ δ 3 e p μ μ q η η + 1 2 q η η 2 r δ δ 2 e p μ μ q η η + 1 6 q η η 2 r δ δ 3 e p μ μ q η η + p μ μ 2 e p μ μ q η η + p μ μ 2 r δ δ e p μ μ q η η p μ μ q η η L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ p μ μ q η η q η η e p μ μ q η η + q η η r δ δ e p μ μ q η η 1 2 p μ μ r δ δ 2 e p μ μ q η η + 1 6 p μ μ r δ δ 3 e p μ μ q η η + 1 2 q η η r δ δ 2 e p μ μ q η η + 1 6 q η η r δ δ 3 e p μ μ q η η p μ μ e p μ μ q η η + p μ μ r δ δ e p μ μ q η η p μ μ q η η L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ 1 2 r δ δ 2 e p μ μ q η η + 1 6 r δ δ 3 e p μ μ q η η = L p 1 L q 1 S r 1 φ 4 1 θ 1 1 θ 2 + φ 5 1 θ 1 1 θ 2 = 1 24 r δ δ 4 e p μ μ q η η + 1 120 r δ δ 5 e p μ μ q η η .
We continue in this manner to obtain
Φ 3 p μ μ , q η η , r δ δ = L p 1 L q 1 S r 1 φ 2 L p μ L q η S r φ ( Φ 0 ) p μ μ p μ μ ( Φ 2 ) q η η q η η + ( Φ 1 ) p μ μ p μ μ ( Φ 1 ) q η η q η η + ( Φ 2 ) p μ μ p μ μ ( Φ 0 ) q η η q η η p μ μ q η η p μ μ q η η ( Φ 0 ) p μ μ ( Φ 2 ) q η η + ( Φ 1 ) p μ μ ( Φ 1 ) q η η + ( Φ 2 ) p μ μ ( Φ 0 ) q η η p μ μ q η η Φ 2 = 1 720 r δ δ 6 e p μ μ q η η + 1 5040 r δ δ 7 e p μ μ q η η .
Therefore, the approximate solution of (59) is
Φ p μ μ , q η η , r δ δ = k = 0 Φ k p μ μ , q η η , r δ δ = Φ 0 + Φ 1 + Φ 2 + Φ 3 + Φ 4 + = e p μ μ q η η + r δ δ e p μ μ q η η 1 2 r δ δ 2 e p μ μ q η η + 1 6 r δ δ 3 e p μ μ q η η + 1 24 r δ δ 4 e p μ μ q η η + 1 120 r δ δ 5 e p μ μ q η η 1 720 r δ δ 6 e p μ μ q η η + 1 5040 r δ δ 7 e p μ μ q η η + = e p μ μ q η η 1 1 2 r δ δ 2 + 1 24 r δ δ 4 1 720 r δ δ 6 + + e p μ μ q η η r δ δ 1 6 r δ δ 3 + 1 120 r δ δ 5 1 5040 r δ δ 7 + = e p μ μ q η η sin r δ δ + e p μ μ q η η cos r δ δ .
Hence, the solution of (59) is
Φ p μ μ , q η η , r δ δ = e p μ μ q η η sin r δ δ + e p μ μ q η η cos r δ δ .
Figure 3 displays the three-dimensional plots of the approximate solutions of Φ p μ μ , q η η , r δ δ for fixed values p = 1 and μ = 1 , with various choices of δ and η. The exact solution of (59) is
Φ p , q , r = e p q sin r + e p q cos r .
when μ = η = δ = 1 in (77).

5. Conclusions

In this paper, we introduce the conformable triple Laplace–Sumudu transform and apply it to both linear and nonlinear conformable fractional partial differential equations. The effectiveness of the CTLST is demonstrated through illustrative examples, including the wave and Poisson equations. The results highlight the simplicity and efficiency of the proposed method in handling various types of fractional partial differential equations. Future research will focus on extending this approach to three-dimensional conformable fractional partial differential equations.

Author Contributions

Conceptualization, M.R.G.; Methodology, S.A. and M.R.G.; Formal analysis, M.R.G.; Investigation, S.A. and M.R.G.; Resources, S.A. and M.R.G.; Writing—original draft, S.A. and M.R.G.; Writing—review and editing, M.R.G.; Funding acquisition, S.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Ongoing Research Funding program (ORF-2025-839), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

No new data were created or analyzed in this study.

Acknowledgments

The authors would like to extend their sincere appreciation to the Ongoing Research Funding program (ORF-2025-839), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Nieto, J.; Rodríguez-López, R. Fractional Differential Equations: Theory, Methods and Applications; MDPI: Basel, Switzerland, 2019. [Google Scholar]
  2. Chakraverty, S.; Mahato, N.; Karunakar, P.; Rao, T. Advanced Numerical and Semi-Analytical Methods for Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
  3. Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  4. Schiff, J. The Laplace Transform: Theory and Applications; Springer Science & Business Media: New York, NY, USA, 1999. [Google Scholar]
  5. Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
  6. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  7. Thabet, H.; Kendre, S. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Solitons Fractals 2018, 109, 238–245. [Google Scholar] [CrossRef]
  8. Alfaqeih, S.; Kayijuka, I. Solving system of conformable fractional differential equations by conformable double Laplace decomposition method. J. Partial Differ. Equ. 2020, 33, 275–290. [Google Scholar] [CrossRef]
  9. Kilicman, A.; Gadain, H. An application of double Laplace transform and double Sumudu transform. Lobachevskii J. Math. 2009, 30, 214–223. [Google Scholar] [CrossRef]
  10. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
  11. Difonzo, F.; Garrappa, R. A numerical procedure for fractional-time-space differential equations with the spectral fractional Laplacian. In Proceedings of the INdAM workshop on Fractional Differential Equations: Modeling, Discretization, and Numerical Solvers, Roma, Italy, 12–14 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 29–51. [Google Scholar]
  12. Özkan, O.; Kurt, A. On conformable double Laplace transform. Opt. Quantum Electron. 2018, 50, 103. [Google Scholar] [CrossRef]
  13. Kılıçman, A.; Gadain, H. On the applications of Laplace and Sumudu transforms. J. Frankl. Inst. 2010, 347, 848–862. [Google Scholar] [CrossRef]
  14. Weerakoon, S. Application of Sumudu transform to partial differential equations. Int. J. Math. Educ. Sci. Technol. 1994, 25, 277–283. [Google Scholar] [CrossRef]
  15. Ziane, D.; Baleanu, D.; Belghaba, K.; Cherif, M. Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud Univ.-Sci. 2019, 31, 83–88. [Google Scholar] [CrossRef]
  16. Elzaki, T.; Ahmed, S.; Areshi, M.; Chamekh, M. Fractional partial differential equations and novel double integral transform. J. King Saud Univ.-Sci. 2022, 34, 101832. [Google Scholar] [CrossRef]
  17. Ahmed, S.; Saadeh, R.; Qazza, A.; Elzaki, T. Modified conformable double Laplace–Sumudu approach with applications. Heliyon 2023, 9, e15891. [Google Scholar] [CrossRef] [PubMed]
  18. Watugala, G. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Integr. Educ. 1993, 24, 35–43. [Google Scholar] [CrossRef]
  19. Wang, C.; Xu, T. Triple Mixed Integral Transformation and Applications for Initial-Boundary Value Problems. J. Nonlinear Math. Phys. 2024, 31, 39. [Google Scholar] [CrossRef]
  20. Tayyan, B.; Sakka, A. Lie symmetry analysis of some conformable fractional partial differential equations. Arab. J. Math. 2020, 9, 201–212. [Google Scholar] [CrossRef]
  21. Eltayeb, H.; Bachar, I.; Kılıçman, A. On conformable double laplace transform and one dimensional fractional coupled burgers’ equation. Symmetry 2019, 11, 417. [Google Scholar] [CrossRef]
  22. Hamza, A.; Mohamed, M.; Abd Elmohmoud, E.; Magzoub, M. Conformable Sumudu Transform of Space-Time Fractional Telegraph Equation. In Abstract and Applied Analysis; Wiley Online Library: Hoboken, NJ, USA, 2021; Volume 2021, p. 6682994. [Google Scholar]
  23. Ahmed, S.; Qazza, A.; Saadeh, R.; Elzaki, T. Conformable double laplace–sumudu iterative method. Symmetry 2022, 15, 78. [Google Scholar] [CrossRef]
  24. Bhanotar, S.; Belgacem, F. Theory and applications of distinctive conformable triple Laplace and Sumudu transforms decomposition methods. J. Partial Differ. Equ. 2021, 35, 49–77. [Google Scholar] [CrossRef]
  25. Baleanu, D.; Jassim, H. Exact solution of two-dimensional fractional partial differential equations. Fractal Fract. 2020, 4, 21. [Google Scholar] [CrossRef]
  26. Saadah, R.; Amleh, M.; Qazza, A.; Al-Omari, S.; Akdemir, A. Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform. CMES-Comput. Model. Eng. Sci. 2024, 140, 1594–1616. [Google Scholar] [CrossRef]
  27. Khan, H.; Shah, R.; Kumam, P.; Arif, M. Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method. Entropy 2019, 21, 597. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The 3D plots of the approximation solutions of Φ p μ μ , q η η , r δ δ in Example 1.
Figure 1. The 3D plots of the approximation solutions of Φ p μ μ , q η η , r δ δ in Example 1.
Symmetry 17 01543 g001
Figure 2. The 3D plots of the approximation solutions of Φ p μ μ , q η η , r δ δ in Example 2.
Figure 2. The 3D plots of the approximation solutions of Φ p μ μ , q η η , r δ δ in Example 2.
Symmetry 17 01543 g002
Figure 3. The 3D plots of the approximate solutions of Φ p μ μ , q η η , r δ δ in Example 3.
Figure 3. The 3D plots of the approximate solutions of Φ p μ μ , q η η , r δ δ in Example 3.
Symmetry 17 01543 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Aldossari, S.; GadAllah, M.R. On the Conformable Triple Laplace–Sumudu Transform and Two-Dimensional Fractional Partial Differential Equations. Symmetry 2025, 17, 1543. https://doi.org/10.3390/sym17091543

AMA Style

Aldossari S, GadAllah MR. On the Conformable Triple Laplace–Sumudu Transform and Two-Dimensional Fractional Partial Differential Equations. Symmetry. 2025; 17(9):1543. https://doi.org/10.3390/sym17091543

Chicago/Turabian Style

Aldossari, Shayea, and Musa Rahamh GadAllah. 2025. "On the Conformable Triple Laplace–Sumudu Transform and Two-Dimensional Fractional Partial Differential Equations" Symmetry 17, no. 9: 1543. https://doi.org/10.3390/sym17091543

APA Style

Aldossari, S., & GadAllah, M. R. (2025). On the Conformable Triple Laplace–Sumudu Transform and Two-Dimensional Fractional Partial Differential Equations. Symmetry, 17(9), 1543. https://doi.org/10.3390/sym17091543

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop