Multi-Scale Analysis of Sand Behavior Under Rigid and Flexible Membrane Boundaries in DEM Triaxial Compression
Abstract
1. Introduction
2. Materials and Methods
2.1. Flexible Membrane Boundary Method
- (1)
- Generate the specimen within rigid walls and achieve initial equilibrium.
- (2)
- Apply servo-controlled loading through rigid walls to reach the target confining pressure.
- (3)
- Reset particle velocities to zero and install the bonded-ball flexible membrane (detailed in the following section).
- (4)
- Apply confining pressure to the membrane particles (loading method described below).
- (5)
- Conduct axial loading via the top platen, with membrane particles at both the top and bottom rigidly bonded to the platens to simulate the actual clamping effect in physical experiments.
2.1.1. Generation of Flexible Membrane Particles
2.1.2. Application of Boundary Confining Pressure
2.2. Specimen Preparation
3. Results and Analyses
3.1. Macroscopic Mechanical Response
3.2. Failure Modes and Shear Band
3.3. Local Porosity Evolution
3.4. Fabric and Force Chain Analyses
4. Discussion
4.1. Explanation for the Differences Between the Two Boundary Loading Results
4.2. Appropriate Selection of Loading Boundaries
5. Conclusions
- (1)
- Confining pressure and initial porosity jointly influence boundary effects. At low confining pressures, the differences between rigid and flexible boundaries are mainly reflected in deformation patterns; at high confining pressures, macro-mechanical disparities become more pronounced. Dense specimens under flexible boundaries form sharper shear bands and undergo stronger stress redistribution, while loose specimens exhibit broader deformation zones and gentler post-peak softening.
- (2)
- Rigid and flexible boundaries produce similar stress–strain responses before peak strength, but rigid boundaries generally underestimate post-peak deviatoric stress—particularly for dense specimens under high confining pressures—while flexible boundaries better capture localized volumetric contraction and heterogeneous deformation.
- (3)
- Rigid boundaries constrain lateral deformation, producing regular, diagonally oriented shear bands and more uniform porosity changes. Flexible boundaries permit central bulging, heterogeneous shear localization, and greater spatial variability in local porosity, with increases in shear zones and reductions outside them.
- (4)
- In terms of contact force networks, flexible boundaries generate more uniform force distributions and dispersed force chains, facilitating natural particle rearrangement; rigid boundaries concentrate force chains along shear directions, increasing local anisotropy and affecting residual strength.
- (5)
- Rigid boundaries apply confinement through servo-controlled walls, while flexible membranes distribute pressure uniformly via membrane particles. Rigid boundaries are applicable for dense sands when post-peak behavior is not critical and for loose sands at small strains, whereas flexible boundaries are necessary for contractive sands and for capturing realistic post-peak responses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gudehus, G.; Nuebel, K. Evolution of shear bands in sand. Geotechnique 2004, 54, 187–201. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Sture, S. Shear Band Formation in Plane Strain Experiments of Sand. J. Geotech. Geoenviron. Eng. 2000, 126, 495–503. [Google Scholar] [CrossRef]
- Wang, L.; Han, K.H.; Xie, T.W.; Luo, J.J. Calculation of Limit Support Pressure for EPB Shield Tunnel Face in Water-Rich Sand. Symmetry 2019, 11, 1102. [Google Scholar] [CrossRef]
- Han, K.H.; Wang, X.T.; Hou, B.B.; Lin, X.T.; Cao, C.Y. Analysis of Instability Mode and Limit Support Pressure of Shallow Tunnel Face in Sands. Symmetry 2020, 12, 2067. [Google Scholar] [CrossRef]
- Dong, T.; Zheng, Y.R.; Liang, K.; Liu, C. Shear strength and shear bands of anisotropic sand. Acta Geotech. 2022, 17, 2841–2853. [Google Scholar] [CrossRef]
- Yu, F.W. Characteristics of particle breakage of sand in triaxial shear. Powder Technol. 2017, 320, 656–667. [Google Scholar] [CrossRef]
- Li, T.R.; Li, G.; Ding, Y.Q.; Kong, T.Q.; Liu, J.G.; Zhang, G.K.; Zhang, N. Impact response of unsaturated sandy soil under triaxial stress. Int. J. Impact Eng. 2022, 160, 17. [Google Scholar] [CrossRef]
- Wu, M.M.; Fan, Y.J.; Wang, J.F.; Yin, Z.Y. Modeling a Flexible Membrane for Triaxial Tests with Coupled FDM-DEM: Considering Realistic Particle Shape Effects. Int. J. Geomech. 2024, 24, 11. [Google Scholar] [CrossRef]
- Castro, E.; García-Ros, G.; Villalva-León, D.X.; Valenzuela, J.; Sánchez-Pérez, J.F.; Conesa, M. Dimensionless Parameters for Waveform Characterization of Acoustic Emission Signals: Application to Sedimentation and Soil Compression Experiments. Symmetry 2023, 15, 2094. [Google Scholar] [CrossRef]
- Cundall, P.A. A Computer Model for Simulating Progressive Large Scale Movement in Blocky Rock System. In Proceedings of the International Symposium on Rock Mechanics, Nancy, France, 4–6 October 1971. [Google Scholar]
- Mohamed, T.; Duriez, J.; Veylon, G.; Peyras, L. Flexible membrane boundary condition DEM-FEM for drained and undrained monotonic and cyclic triaxial tests. Granul. Matter 2024, 26, 13. [Google Scholar] [CrossRef]
- Shi, C.; Yang, W.K.; Chu, W.J.; Shen, J.L.; Kong, Y. Study of Anti-Sliding Stability of a Dam Foundation Based on the Fracture Flow Method with 3D Discrete Element Code. Energies 2017, 10, 1544. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, T.; Dong, H.; Fang, Y. The Effect of a Moving Boundary on the Shear Strength of Granular Materials in a Direct Shear Test. Symmetry 2023, 15, 1734. [Google Scholar] [CrossRef]
- de Bono, J.; McDowell, G.; Wanatowski, D. Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Geotech. Lett. 2012, 2, 199–203. [Google Scholar] [CrossRef]
- Kozicki, J.; Tejchman, J.; Mühlhaus, H.B. Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 1923–1952. [Google Scholar] [CrossRef]
- Cil, M.B.; Alshibli, K.A. 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary. Acta Geotech. 2014, 9, 287–298. [Google Scholar] [CrossRef]
- Huang, S.H.; Qian, Y.; Shan, Y. Effect of flexible membrane in large-scale triaxial test DEM simulations. Constr. Build. Mater. 2023, 370, 13. [Google Scholar] [CrossRef]
- Pham, T.; Zaman, M.W.; Vu, T. Modeling Triaxial Testing with Flexible Membrane to Investigate Effects of Particle Size on Strength and Strain Properties of Cohesionless Soil. Transp. Infrastruct. Geotechnol. 2022, 9, 417–441. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, R.S.; Tan, Y.C.; Li, Y.F.; Li, L.L. Modeling of flexible coupling boundary combing discrete element method with finite difference method for drained/undrained triaxial test. Powder Technol. 2023, 427, 11. [Google Scholar] [CrossRef]
- Binesh, S.M.; Eslami-Feizabad, E.; Rahmani, R. Discrete Element Modeling of Drained Triaxial Test: Flexible and Rigid Lateral Boundaries. Int. J. Civ. Eng. 2018, 16, 1463–1474. [Google Scholar] [CrossRef]
- Qu, T.M.; Feng, Y.T.; Wang, Y.; Wang, M. Discrete element modelling of flexible membrane boundaries for triaxial tests. Comput. Geotech. 2019, 115, 14. [Google Scholar] [CrossRef]
- Zhu, H.X.; Yin, Z.Y.; Zhang, Q. A novel coupled FDM-DEM modelling method for flexible membrane boundary in laboratory tests. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 389–404. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.J.; Wang, Y.L. Application of a flexible membrane to DEM modelling of axisymmetric triaxial compression tests on sands. Eur. J. Environ. Civ. Eng. 2018, 22, s19–s36. [Google Scholar] [CrossRef]
- Yang, T.T.; Zheng, W.C.; Zhang, H.G.; Yue, X.B. Triaxial Shear Analysis Using Discrete Element Methods for Sandy Soil with an Improved Flexible Membrane Boundary. Sustainability 2023, 15, 12911. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, C.; Zhang, X.Y.; Wang, X.G.; Shi, B.; Wang, Y.; Deng, S. A three-dimensional discrete element model of triaxial tests based on a new flexible membrane boundary. Sci. Rep. 2021, 11, 13. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Wang, X.M.; Yu, Q.D.; Ren, J.J.; Hua, W.J.; Mustafina, R.; Zhang, F.G.; Feng, H.P.; Zhang, T.W. Discrete Element Modeling of Instability Mechanisms of Unbound Permeable Aggregate Base Materials in Triaxial Compression. Materials 2022, 15, 2716. [Google Scholar] [CrossRef]
- Cheng, Y.; Nakata, Y.; Bolton, M.D. Discrete element simulation of crushable soil. Geotechnique 2003, 53, 633–641. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Geraldine, C.; Catherine, O.S. Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 2008, 6, 483–500. [Google Scholar] [CrossRef]
- Asgari, A.; Arjomand, M.A.; Bagheri, M.; Ebadi-Jamkhaneh, M.; Mostafaei, Y. Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand. Buildings 2025, 15, 2683. [Google Scholar] [CrossRef]
- Asadoullahtabar, S.R.; Asgari, A.; Tabari, M.M.R. Assessment, identifying, and presenting a plan for the stabilization of loessic soils exposed to scouring in the path of gas pipelines, case study: Maraveh-Tappeh city. Eng. Geol. 2024, 342, 17. [Google Scholar] [CrossRef]
- Cao, Z.L.; Sun, W.C.; Xie, Q.; Wu, Z.H.; Fu, X.; Fumagalli, A.; Tian, D.L.; Liang, L. Fluid-solid coupled model for the internal erosion of gap-graded soil-rock mixtures with different fines contents: Its verification and application. Hydrol. Process. 2022, 36, 20. [Google Scholar] [CrossRef]
- Shi, C.; Yang, W.K.; Yang, J.X.; Chen, X. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granul. Matter 2019, 21, 13. [Google Scholar] [CrossRef]
- Cao, Z.L.; Song, Z.P.; Sun, W.C.; Xie, Q.; Fumagalli, A.; Tian, X.X.; Shen, X.L. A numerical approach for CFD-DEM coupling method with pore network model considering the effect of anisotropic permeability in soil-rock mixtures. Comput. Geotech. 2025, 178, 15. [Google Scholar] [CrossRef]
- Peters, J.F.; Muthuswamy, M.; Wibowo, J.; Tordesillas, A. Characterization of force chains in granular material. Phys. Rev. E 2005, 72, 041307. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.-C.; Xin, H.-L.; Liu, J.-G.; Jin, F. Skeleton and force chain network in static granular material. Rock Soil Mech. 2009, 30, 83–87. [Google Scholar]
Microscopic Parameters | Kn/Ks | Friction | cb_Tenf (N/m2) | cb_Shearf (N/m2) | rr_Fric |
---|---|---|---|---|---|
flexible membrane boundary | 1 | 0 | 1 × 10300 | 1 × 10300 | 0 |
Soil particles | 3 | 0.4 | / | / | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shen, X.; Yu, Y.; Liang, J.; Zhou, P. Multi-Scale Analysis of Sand Behavior Under Rigid and Flexible Membrane Boundaries in DEM Triaxial Compression. Symmetry 2025, 17, 1499. https://doi.org/10.3390/sym17091499
Li J, Shen X, Yu Y, Liang J, Zhou P. Multi-Scale Analysis of Sand Behavior Under Rigid and Flexible Membrane Boundaries in DEM Triaxial Compression. Symmetry. 2025; 17(9):1499. https://doi.org/10.3390/sym17091499
Chicago/Turabian StyleLi, Jiesheng, Xiaole Shen, Youyi Yu, Jin Liang, and Pengyuan Zhou. 2025. "Multi-Scale Analysis of Sand Behavior Under Rigid and Flexible Membrane Boundaries in DEM Triaxial Compression" Symmetry 17, no. 9: 1499. https://doi.org/10.3390/sym17091499
APA StyleLi, J., Shen, X., Yu, Y., Liang, J., & Zhou, P. (2025). Multi-Scale Analysis of Sand Behavior Under Rigid and Flexible Membrane Boundaries in DEM Triaxial Compression. Symmetry, 17(9), 1499. https://doi.org/10.3390/sym17091499