A Combinatorial Method for the Number of Components of DNA and Polypeptide Cages
Abstract
1. Introduction
2. Preliminaries
2.1. Double Trace and Its Properties
2.2. Some Basic Results in Knot Theory
3. π-Junction, the Special Face Graph, and the Flat-Based Operations
3.1. π-Junction and Special Face Graph
3.2. The Flat-Based Operations
4. A Theorem on 2-Connected and Plane Graphs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RSF graph | Reduced special face graph |
References
- Aldaye, F.A.; Palmer, A.L.; Sleiman, H.F. Assembling materials with DNA as the guide. Science 2008, 321, 1795–1799. [Google Scholar] [CrossRef]
- Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, T.; Zhang, T.; Cai, X.; Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today 2019, 24, 57–68. [Google Scholar] [CrossRef]
- Sadowski, J.P.; Calvert, C.R.; Zhang, D.Y.; Pierce, N.A.; Yin, P. Developmental self-assembly of a DNA tetrahedron. ACS Nano. 2014, 8, 3251–3259. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Z.; Zhang, H.; Li, M.; Hou, Z.; Luo, X.; Xue, X. Development of DNA tetrahedron-based drug delivery system. Drug Deliv. 2017, 24, 1295–1301. [Google Scholar] [CrossRef]
- Li, J.B.; Wang, X.C.; Wang, X.M. Radiolabeling and preliminary evaluation of DNA cube nanoparticles in vivo & in vitro. J. Nucl. Med. 2018, 59, 1069. [Google Scholar]
- Bujold, K.E.; Fakhoury, J.; Edwardson, T.G.W.; Carneiro, K.M.M.; Briard, J.N.; Godin, A.G.; Amrein, L.; Hamblin, G.D.; Panasci, L.C.; Wiseman, P.W.; et al. Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles. Chem. Sci. 2014, 5, 2449–2455. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Li, Y.; Mao, C.D. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. J. Am. Chem. Soc. 2019, 141, 4248–4251. [Google Scholar] [CrossRef]
- Hu, G.; Zhai, X.; Lu, D.; Qiu, W.-Y. The architecture of Platonic polyhedral links. J. Math. Chem. 2009, 46, 592–603. [Google Scholar] [CrossRef]
- Duan, J.; Li, W.; Li, X.W.; Hu, G.; Qiu, W.-Y. Molecular design of DNA polyhedra based on genus. J. Math. Chem. 2014, 52, 2380–2394. [Google Scholar] [CrossRef]
- Gradišar, H.; Božič, S.; Doles, T.; Vengust, D.; Hafner-Bratkovič, I.; Mertelj, A.; Webb, B.; Šali, A.; Klǎzar, S.; Jerala, R. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat. Chem. Biol. 2013, 9, 362–366. [Google Scholar] [CrossRef]
- Ljubetič, A.; Lapenta, F.; Gradišar, H.; Drobnak, I.; Aupič, J.; Strmšek, Ž.; Lainšček, D.; Hafner-Bratkovič, I.; Majerle, A.; Krivec, N.; et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 2017, 35, 1094–1101. [Google Scholar] [CrossRef]
- Majerle, A.; Hadži, S.; Aupič, J. A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2021899118. [Google Scholar] [CrossRef] [PubMed]
- Fijavž, G.; Pisanski, T.; Rus, J. Strong traces model of self-assembly polypeptide structures. MATCH Commun. Math. Comput. Chem. 2014, 71, 199–212. [Google Scholar]
- Klavzˇar, S.; Rus, J. Stable traces as a model for self-assembly of polypeptide nanoscale polyhedrons. MATCH Commun. Math. Comput. Chem. 2013, 70, 317–330. [Google Scholar]
- Jonoska, N.; Saito, M. Boundary components of thickened graphs. Lect. Notes Comput. Sci. 2002, 2340, 70–81. [Google Scholar] [CrossRef]
- Jonoska, N.; Twarock, R. Blueprints for dodecahedral DNA cages. J. Phys. A Math. Theor. 2008, 41, 304043–304057. [Google Scholar] [CrossRef]
- Cheng, X.S.; Diao, Y. Configurations of DNA cages based on plane graphs and vertex junctions. J. Phys. Math. Theor. 2020, 52, 395601–395623. [Google Scholar] [CrossRef]
- Cheng, X.S.; Deng, Q.; Diao, Y. Constructions of DNA and polypeptide cages based on plane graphs and odd crossing π-junctions. Appl. Math. Comput. 2023, 443, 127773–127788. [Google Scholar] [CrossRef]
- Edwardson, T.G.W.; Levasseur, M.D.; Tetter, S.; Steinauer, A.; Hori, M.; Hilvert, D. Protein cages: From fundamentals to advanced applications. Chem. Rev. 2022, 122, 9145–9197. [Google Scholar] [CrossRef]
- Majsterkiewicz, K.; Azuma, Y.; Heddle, J.G. Connectability of protein cages. Nanoscale Adv. 2020, 2, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Tupe, C.; Chakraborti, S. Bioinspired and Green Synthesis of Nanostructures: A Sustainable Approach; Scrivener Publishing LLC: Beverly, MA, USA, 2023. [Google Scholar]
- West, D.B. Introduction to Graph Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1996; Volume 2. [Google Scholar]
- Hatcher, A. Algebraic Topology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Murasugi, K. Knot Theory and Its Applications; Birkhauser Boston: Boston, MA, USA, 1996. [Google Scholar]
- Livingston, C. Knot Theory; The Mathematical Association of America: Washington, DC, USA, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Cheng, X.-S. A Combinatorial Method for the Number of Components of DNA and Polypeptide Cages. Symmetry 2025, 17, 1463. https://doi.org/10.3390/sym17091463
Ning J, Cheng X-S. A Combinatorial Method for the Number of Components of DNA and Polypeptide Cages. Symmetry. 2025; 17(9):1463. https://doi.org/10.3390/sym17091463
Chicago/Turabian StyleNing, Jiajun, and Xiao-Sheng Cheng. 2025. "A Combinatorial Method for the Number of Components of DNA and Polypeptide Cages" Symmetry 17, no. 9: 1463. https://doi.org/10.3390/sym17091463
APA StyleNing, J., & Cheng, X.-S. (2025). A Combinatorial Method for the Number of Components of DNA and Polypeptide Cages. Symmetry, 17(9), 1463. https://doi.org/10.3390/sym17091463