Multiple Bifurcation Analysis in a Discrete-Time Predator–Prey Model with Holling IV Response Function
Abstract
1. Introduction
2. Existence and Stability of Positive Equilibria
3. Codimension-One Bifurcation Analysis
3.1. Flip Bifurcation
3.2. Neimark–Sacker Bifurcation
4. Codimension-Two Bifurcation Analysis
4.1. 1:2 Strong Resonance
4.2. 1:3 Strong Resonance
4.3. 1:4 Strong Resonance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Tang, D.; Wang, Z.A. Coexistence of heterogeneous predator-prey systems with prey-dependent dispersal. J. Differ. Equ. 2024, 409, 461–497. [Google Scholar] [CrossRef]
- Paul, B.; Sikdar, G.C.; Ghosh, U. Effect of fear and non-linear predator harvesting on a predator-prey system in presence of environmental variability. Math. Comput. Simulat. 2025, 227, 442–460. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Dai, Y.; Lin, Y. Stability switching curves and Hopf bifurcation of a fractional predator-prey system with two nonidentical delays. Symmetry 2022, 14, 643. [Google Scholar] [CrossRef]
- Umrao, A.K.; Roy, S.; Tiwari, P.K.; Srivastava, P.K. Dynamical behaviors of autonomous and nonautonomous models of generalist predator-prey system with fear, mutual interference and nonlinear harvesting. Chaos Solitons Fractals 2024, 183, 114891. [Google Scholar] [CrossRef]
- Din, Q.; Naseem, R.A.; Shabbir, M.S. Predator-prey interaction with fear effects: Stability, bifurcation and two-parameter analysis incorporating complex and fractal behavior. Fractal. Fract. 2024, 8, 221. [Google Scholar] [CrossRef]
- Hill, J.L.; Grisnik, M.; Hanscom, R.J.; Sukumaran, J.; Higham, T.E.; Clark, R.W. The past, present, and future of predator-prey interactions in a warming world: Using species distribution modeling to forecast ectotherm-endotherm niche overlap. Ecol. Evol. 2024, 14, e11067. [Google Scholar] [CrossRef]
- Rajni, R.; Bapan, G. Arnold tongues, shrimp structures, multistablity, and ecological paradoxes in a discrete-time predator-prey system. Chaos 2024, 34, 123103. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Q.; Qiu, Z.; Hu, Z. Complex dynamics of a discrete-time predator-prey system with Holling IV functional response. Chaos Solitons Fractals 2016, 87, 158–171. [Google Scholar] [CrossRef]
- Holling, C. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Holling, C. The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 1965, 45, 1–60. [Google Scholar] [CrossRef]
- Andrews, J. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968, 10, 707–723. [Google Scholar] [CrossRef]
- Boon, B.; Landelout, H. Kinetics of nitrite oxidation by Nitrobacter Winogradski. Biochem. J. 1962, 85, 440–447. [Google Scholar]
- Edwards, V. Influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. [Google Scholar] [CrossRef]
- Taylor, R. Predation; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar]
- Yang, Y.; Meng, F.; Xu, Y. Global bifurcation analysis in a predator-prey system with simplified Holling IV functional response and antipredator behavior. Math. Method. Appl. Sci. 2023, 46, 6135–6153. [Google Scholar]
- Amirabad, M.; Rabieimotlagh, O.; Mohammadinejad, H. Permanency in predator-prey models of Leslie type with ratiodependent simplified Holling type-IV functional response. Math. Comput. Simul. 2019, 157, 63–76. [Google Scholar] [CrossRef]
- Pang, X.; Qiao, Y. Dynamics of a simplified Holling IV type predator-prey system with weak Allee effect on prey and anti-predator behavior. J. Biol. Syst. 2025, 33, 195–220. [Google Scholar]
- Yadav, R.; Sen, M. Spatio-temporal complexity in a prey-predator system with Holling type-IV response and Leslie-type numerical response: Turing and steady-state bifurcations. Math. Comput. Simulat. 2024, 225, 283–302. [Google Scholar]
- Hadeler, K.; Gerstmann, I. The discrete Rosenzweig model. Math. Biosci. 1990, 98, 49–72. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, D. Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Solitons Fractals 2007, 32, 80–94. [Google Scholar] [CrossRef]
- Ajaz, M.; Saeed, U.; Din, Q.; Ali, I.; Siddiqui, M. Bifurcation analysis and chaos control in discrete-time modified Leslie-Gower prey harvesting model. Adv. Differ. Equ. 2020, 2020, 1–24. [Google Scholar]
- Shah, S.; Wiener, J. Advanced differential equations with piecewise constant argument deviations. Int. J. Math. Math. Sci. 1983, 6, 671–703. [Google Scholar] [CrossRef]
- Din, Q.; Saleem, N.; Shabbir, M. A class of discrete predator-prey interaction with bifurcation analysis and chaos control. Math. Modell. Nat. Phenom. 2020, 15, 60. [Google Scholar] [CrossRef]
- Naik, P.; Eskandari, Z.; Yavuz, M.; Zu, J. Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect. J. Comput. Appl. Math. 2022, 413, 114401. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, A.; Elsonbaty, A.; Elsadany, A. Codimension-one and -two bifurcation analysis of a discrete-time prey-predator model. Int. J. Dyn. Control 2022, 11, 2691–2705. [Google Scholar] [CrossRef]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 2004. [Google Scholar]
- Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA, 1990. [Google Scholar]
- Al-Kaf, M.; El-Metwally, H.; Elsadany, A.; Elabbasy, E. Exploring chaos ad bifurcation in a discrete prey-predator based on coupled logistic map. Sci. Rep. 2024, 14, 16118. [Google Scholar]
- Tassaddiq, A.; Shabbir, M.; Din, Q.; Naaz, H. Discretization, bifurcation, and control for a class of predator-prey interactions. Fractal Fract. 2022, 6, 31. [Google Scholar] [CrossRef]
- Yousef, A.M.; Algelany, A.M.; Elsadany, A.A. Codimension one and codimension two bifurcations in a discrete Kolmogorov type predator-prey model. J. Comput. Appl. Math. 2023, 428, 115171. [Google Scholar] [CrossRef]
- Liu, M.; Meng, F.; Hu, D. Codiemnsion-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model. Nonlinear Dyn. 2022, 110, 1831–1865. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y. Codimension-two bifurcation analysis on a discrete Gierer-Meinhardt system. Int. J. Bifurca. Chaos 2020, 30, 2050251. [Google Scholar] [CrossRef]
- Hu, D.; Yu, X.; Zheng, Z.; Zhang, C.; Liu, M. Multiple bifurcations in a discrete Bazykin predator-prey model with predator intraspecific interactions and ratio-dependent functional response. Qual. Theor. Dyn. Syst. 2023, 22, 99. [Google Scholar] [CrossRef]
- Ren, J.; Yu, L. Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. Nonlinear Sci. 2016, 26, 1895–1931. [Google Scholar] [CrossRef]
- Ma, J.; Duan, M. Codimension-two bifurcations of a two-dimensional discrete time Lotka-Volterra predator-prey model. Discret. Contin. Dyn. Syst. B 2024, 29, 1217–1242. [Google Scholar]
- Schuster, H.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Weinheim, Germany, 2006. [Google Scholar]
- Garai, S.; Karmakar, S.; Jafari, S.; Pal, N. Coexistence of triple, quadruple attractors and Wada basin boundaries in a predator-prey model with additional food for predators. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107208. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Guo, L.; Liu, X. Multiple Bifurcation Analysis in a Discrete-Time Predator–Prey Model with Holling IV Response Function. Symmetry 2025, 17, 1459. https://doi.org/10.3390/sym17091459
Liu Y, Guo L, Liu X. Multiple Bifurcation Analysis in a Discrete-Time Predator–Prey Model with Holling IV Response Function. Symmetry. 2025; 17(9):1459. https://doi.org/10.3390/sym17091459
Chicago/Turabian StyleLiu, Yun, Lifeng Guo, and Xijuan Liu. 2025. "Multiple Bifurcation Analysis in a Discrete-Time Predator–Prey Model with Holling IV Response Function" Symmetry 17, no. 9: 1459. https://doi.org/10.3390/sym17091459
APA StyleLiu, Y., Guo, L., & Liu, X. (2025). Multiple Bifurcation Analysis in a Discrete-Time Predator–Prey Model with Holling IV Response Function. Symmetry, 17(9), 1459. https://doi.org/10.3390/sym17091459