The Optimal Auxiliary Functions Method for Semi-Analytical Solutions of the MHD Mixed Convection Stagnation-Point Flow Problem
Abstract
1. Introduction
2. Methodology
2.1. Equation of Motion
2.2. Semi-Analytical Solutions via the Optimal Auxiliary Functions Method (OAFM)
- orand so on, with , , , , , , , , , , , , , , , and arbitrary parameters at this moment depending on , , K, , and .
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Assisting Flow
- Example 1. Displacement functions obtained from Equation (34) for different values of the velocity ratio parameter A in the case of (assisting flow), , an .
- Example 2. Displacement functions obtained from Equation (34) for different values of the Hartmann number in the case of (assisting flow), , and .
- Example 3. Displacement functions obtained from Equation (34) for different values of the Prandtl number in the case of (assisting flow), , and .
Appendix B. Opposing Flow
- Example 4. Displacement functions obtained from Equation (34) for different values of the velocity ratio parameter A in the case of (opposing flow), , and .
- Example 5. Displacement functions obtained from Equation (34) for different values of the Hartmann number in the case of (opposing flow), , and .
- Example 6. Displacement functions obtained from Equation (34) for different values of the Prandtl number in the case of (opposing flow), , and .
Appendix C. Dual Solutions
- Example 7. Displacement functions obtained from Equation (34) for physical parameters , (opposing flow), , and : The first solution and corresponding dual solution, respectively.
Appendix D. Comparison with the Iterative Method
0 | 0.5 | 0.5000000000000004 | 0.5 |
1/10 | 0.5756672164 | 0.5755589774 | 0.5756360967 |
1/5 | 0.6437024937 | 0.6435682607 | 0.6431918691 |
3/10 | 0.7041027770 | 0.7040298059 | 0.7014524785 |
2/5 | 0.7570149426 | 0.7570421789 | 0.7484293304 |
1/2 | 0.8027327943 | 0.8028453714 | 0.7812520446 |
3/5 | 0.8416816830 | 0.8418330275 | 0.7960406675 |
7/10 | 0.8743938092 | 0.8745327430 | 0.7877586448 |
4/5 | 0.9014776556 | 0.9015675201 | 0.7500482070 |
9/10 | 0.9235851162 | 0.9236113433 | 0.6750525517 |
1 | 0.9413796329 | 0.9413478685 | 0.5532342414 |
References
- Ali, F.M.; Nazar, R.; Arifin, N.M.; Pop, I. Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Appl. Math. Mech.-Engl. Ed. 2014, 35, 155–166. [Google Scholar] [CrossRef]
- Kumari, M.; Nath, G. Unsteady MHD mixed convection flow over an impulsively stretched permeable vertical surface in a quiescent fluid. Int. J. Non-Linear Mech. 2010, 45, 310–319. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vajravelu, K.; Datti, P.S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties. Int. J. Non-Linear Mech. 2010, 45, 320–330. [Google Scholar] [CrossRef]
- Ali, F.M.; Nazar, R.; Arifin, N.M.; Pop, I. MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transf. 2011, 47, 155–162. [Google Scholar] [CrossRef]
- Hiemenz, K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Polytech. J. 1911, 326, 321–324. [Google Scholar]
- Eckert, E.R.G. Die Berechnung des Warmeubergangs in der laminaren Grenzschicht umstromter Korpe. VDI Forschungsheft. 1942, 416, 1–23. [Google Scholar]
- Ramachandran, N.; Chen, T.S.; Armaly, B.F. Mixed convection in stagnation flows adjacent to vertical surfaces. J. Heat Transf. 1988, 110, 373–377. [Google Scholar] [CrossRef]
- Andersson, H.I. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1922, 95, 227–230. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Comput. Math. Appl. 2008, 56, 3188–3194. [Google Scholar] [CrossRef]
- Gupta, A.S.; Pal, A.; Pal, B.; Takhar, H.S. Hall effects on MHD flow and heat transfer over a stretching surface. Int. J. Appl. Mech. Eng. 2003, 8, 219–232. [Google Scholar]
- Abel, S.; Prasad, K.V.; Mahaboob, A. Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface. Int. J. Ther. Sci. 2005, 44, 465–476. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 2008, 44, 921–927. [Google Scholar] [CrossRef]
- Sharma, P.R.; Sinha, S.; Yadav, R.S.; Filippov, A.N. MHD mixed convective stagnation point flow along a vertical stretching sheet with heat source/sink. Int. J. Heat Mass Transf. 2018, 117, 780–786. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chin. J. Phys. 2020, 66, 630–644. [Google Scholar] [CrossRef]
- Ibrahim, W.; Makinde, O.D. The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Comput. Fluids 2013, 86, 433–441. [Google Scholar] [CrossRef]
- Kandasamy, R.; Dharmalingam, R.; Prabhu, K.K. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex. Eng. J. 2018, 57, 121–130. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Hafidzuddin, E.H.; Wahi, N. Dual stratified nanofluid flow past a permeable shrinking/stretching sheetusing a non-Fourier energy model. Appl. Sci. 2019, 9, 2124. [Google Scholar] [CrossRef]
- Abdal, S.; Ali, B.; Younas, S.; Ali, L.; Mariam, A. Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source. Symmetry 2020, 12, 49. [Google Scholar] [CrossRef]
- Murtaza, S.; Kumam, P.; Ahmad, Z.; Sitthithakerngkiet, K.; Sutthibutpong, T. Fractional Model of Brinkman-Type Nanofluid Flow with Fractional Order Fourier’s and Fick’s Laws. Fractals 2023, 31, 2340199. [Google Scholar] [CrossRef]
- Choudhary, P.; Loganathan, K.; Jat, K.; Arunachalam, K.P.; Eswaramoorthi, S. Thermal and velocity slip impacts on MHD tetra-hybrid nanofluids flow over a porous stretching surface. Discov. Appl. Sci. 2025, 7, 720. [Google Scholar] [CrossRef]
- Ajithkumar, M.; Lakshminarayana, P.; Vajravelu, K. Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a flexible porous channel with convective boundary conditions. Phys. Fluids 2023, 35, 032008. [Google Scholar] [CrossRef]
- Nisar, Z.; Ahmed, B.; Ghoneim, M.E.; Elkotb, M.A. Thermal performance of mixed convective radiative peristaltic flow of Bingham nanofluid. Sens. Actuators A Phys. 2024, 373, 115399. [Google Scholar] [CrossRef]
- Akbar, Y.; Huang, S.; Magesh, A.; Ji, J.; Alam, M.M. Thermal analysis of mixed convective peristaltic pumping of nanofluids in the occurrence of an induced magnetic field and variable viscosity. J. Taibah Univ. Sci. 2024, 18, 2319890. [Google Scholar] [CrossRef]
- Jagadesh, V.; Sreenadh, S.; Ajithkumar, M.; Lakshminarayana, P.; Sucharitha, G. Numerical exploration of the peristaltic flow of MHD Jeffrey nanofluid through a non-uniform porous channel with Arrhenius activation energy. Numer. Heat Transf. Part A Appl. 2024, 86, 5542–5556. [Google Scholar] [CrossRef]
- Neelav, S.; Ashish, P.; Bhagyashri, P. Computational study of Jeffrey Hybrid nanofluid flow over on a non-uniformly heated permeable exponentially stretching surface with Arrhenius activation energy and inclined magnetic field. Hybrid Adv. 2024, 6, 100194. [Google Scholar] [CrossRef]
- Ajithkumar, M.; Lakshminarayana, P.; Sucharitha, G.; Vajravelu, K. Investigation of convective peristaltic flow of non-Newtonian fluids through a non-uniform tapered porous conduit with Ohmic heating and viscous dissipation. Int. Model. Simul. 2024, 1–14. [Google Scholar] [CrossRef]
- Sahar, A.; Ghulam, R.; Muhammad, A.; Uzma, A.; Tao, S. Impact of Viscous Dissipation and Ohmic Heating on Natural Convection Heat Transfer in Thermo-Magneto Generated Plume. Front. Heat Mass Transf. 2024, 22, 1323–1341. [Google Scholar] [CrossRef]
- Ajithkumar, M.; Lakshminarayana, P.; Sucharitha, G.; Sreenadh, S.; Jagadesh, V. Investigation of dissipative heat transfer and peristaltic pumping on MHD Casson fluid flow in an inclined channel filled with porous medium. Numer. Heat Transf. Fundam. 2023, 85, 1654–1672. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Rashidi, M.M. Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium. J. Therm. Anal. Calorim. 2020, 139, 3635–3648. [Google Scholar] [CrossRef]
- Alarifi, I.M.; Abokhalil, A.G.; Osman, M.; Lund, L.A.; Ayed, M.B.; Belmabrouk, H.; Tlili, I. MHD Flow and Heat Transfer over Vertical Stretching Sheet with Heat Sink or Source Effect. Symmetry 2019, 11, 297. [Google Scholar] [CrossRef]
- Ene, R.-D.; Pop, N.; Badarau, R. Heat and Mass Transfer Analysis for the Viscous Fluid Flow: Dual Approximate Solutions. Mathematics 2023, 11, 1648. [Google Scholar] [CrossRef]
- Ene, R.-D.; Pop, N.; Badarau, R. Partial Slip Effects for Thermally Radiative Convective Nanofluid Flow. Mathematics 2023, 11, 2199. [Google Scholar] [CrossRef]
- Farooq, M.; Rahman, A.U.; Khan, A.; Ozsahin, I.; Uzun, B.; Ahmad, H. Comparative analysis of magnetohydrodynamic inclined Poiseulle flow of couple stress fluids. J. Comput. Appl. Mech. 2025, 56, 536–560. [Google Scholar]
- Zada, L.; Nawaz, R.; Nisar, K.S.; Tahir, M.; Yavuz, M.; Kaabar, M.K.A.; Martínez, F. New approximate-analytical solutions to partial differential equations via auxiliary function method. Partial Differ. Equ. Appl. Math. 2021, 4, 100045. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, H.; Fiza, M.; Islam, S.; Kuman, P.; Sitthithakerngkiet, P. Falkner-Skan equation with Heat Transfer: A new Optimal approach. Authorea 2024. [Google Scholar] [CrossRef]
- Ene, R.-D.; Pop, N.; Badarau, R. Symmetries and Closed-Form Solutions for Some Classes of Dynamical Systems. Symmetry 2025, 17, 546. [Google Scholar] [CrossRef]
- Sutton, G.W.; Sherman, A. Engineering Magnetohydrodynamics; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Marinca, V.; Herisanu, N. Approximate analytical solutions to Jerk equation. In Springer Proceedings in Mathematics & Statistics: Proceedings of the Dynamical Systems: Theoretical and Experimental Analysis, Lodz, Poland, 7–10 December 2015; Springer: Cham, Switzerland, 2016; Volume 182, pp. 169–176. [Google Scholar]
- Ene, R.-D.; Pop, N.; Lapadat, M.; Dungan, L. Approximate closed-form solutions for the Maxwell-Bloch equations via the Optimal Homotopy Asymptotic Method. Mathematics 2022, 10, 4118. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
0 | 0.5 | 0.5000000000000229 | 2.2870 |
1/2 | 0.8960928439 | 0.8961549821 | 6.2138 |
1 | 0.9773589798 | 0.9778178477 | 4.5886 |
3/2 | 0.9954102379 | 0.9952086147 | 2.0162 |
2 | 0.9992018261 | 0.9990843091 | 1.1751 |
5/2 | 0.9998840149 | 0.9999657791 | 8.1764 |
3 | 0.9999883930 | 1.0001054647 | 1.1707 |
7/2 | 1.0000042182 | 1.0000389239 | 3.4705 |
4 | 1.0000107547 | 0.9999377252 | 7.3029 |
9/2 | 1.0000196939 | 0.9998657691 | 1.5392 |
5 | 1.0000340452 | 0.9998366383 | 1.9740 |
0 | 2 | 2.0000000000000004 | 4.4408 |
3/10 | 1.1846480688 | 1.1845292188 | 1.1885 |
3/5 | 1.0327950895 | 1.0327420747 | 5.3014 |
9/10 | 1.0056928044 | 1.0058149351 | 1.2213 |
6/5 | 1.0009595704 | 1.0010559622 | 9.6391 |
3/2 | 1.0001538714 | 1.0001616729 | 7.8015 |
9/5 | 1.0000194464 | 0.9999730894 | 4.6357 |
21/10 | 0.9999877393 | 0.9999278061 | 5.9933 |
12/5 | 0.9999457162 | 0.999921585 | 2.4130 |
27/10 | 0.9998158512 | 0.9999354901 | 1.1963 |
3 | 0.9994007169 | 0.9999625813 | 5.6186 |
0 | 0.5 | 0.5000000000000004 | 4.4408 |
1/2 | 0.8027327943 | 0.8028453714 | 1.1257 |
1 | 0.9413796329 | 0.9413478685 | 3.1764 |
3/2 | 0.9866297752 | 0.9865985510 | 3.1224 |
2 | 0.9975513666 | 0.9975971331 | 4.5766 |
5/2 | 0.9996277318 | 0.9996207035 | 7.0283 |
3 | 0.9999513469 | 0.9999271217 | 2.4225 |
7/2 | 0.9999916726 | 0.9999898611 | 1.8115 |
4 | 0.9999929774 | 1.0000049169 | 1.1939 |
9/2 | 0.9999878725 | 0.9999952324 | 7.3598 |
5 | 0.9999788892 | 0.9999773849 | 1.5043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N.; Badarau, R. The Optimal Auxiliary Functions Method for Semi-Analytical Solutions of the MHD Mixed Convection Stagnation-Point Flow Problem. Symmetry 2025, 17, 1455. https://doi.org/10.3390/sym17091455
Ene R-D, Pop N, Badarau R. The Optimal Auxiliary Functions Method for Semi-Analytical Solutions of the MHD Mixed Convection Stagnation-Point Flow Problem. Symmetry. 2025; 17(9):1455. https://doi.org/10.3390/sym17091455
Chicago/Turabian StyleEne, Remus-Daniel, Nicolina Pop, and Rodica Badarau. 2025. "The Optimal Auxiliary Functions Method for Semi-Analytical Solutions of the MHD Mixed Convection Stagnation-Point Flow Problem" Symmetry 17, no. 9: 1455. https://doi.org/10.3390/sym17091455
APA StyleEne, R.-D., Pop, N., & Badarau, R. (2025). The Optimal Auxiliary Functions Method for Semi-Analytical Solutions of the MHD Mixed Convection Stagnation-Point Flow Problem. Symmetry, 17(9), 1455. https://doi.org/10.3390/sym17091455