Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes
Abstract
1. Introduction
- The Maxwell equations are expressed in a generally covariant form to be valid in both Minkowski spacetime and curved Riemannian manifolds.
- The curvature of Riemann spacetime is calculated from the distribution of mass and other static physical fields.
- Using Einstein’s principle of equivalence, assume that photon energy and frequency are unaffected by gravitational fields in free-falling frames, so there is no redshift in a free-falling frame.
- The gravitational redshift of light is calculated as a Doppler effect caused by relative motion between a free-falling frame and a non-inertial stationary frame fixed with respect to the gravity field. This shows that clocks in a static gravitational field at low potential run slower than clocks at higher potential.
- The same results are obtained if the shift in photon frequency is considered as an effect of the time dilation of Riemann spacetime curved by gravity. Since the time rate defined by the time-time component of the metric tensor differs for the emitter e and receiver r, the photon frequency must vary:
- The energy of photons is conserved in the free-falling frame but apparently not in the non-inertial static frame. Since the frequency of photons changes for observers at rest, the photon energy should also change according to the Planck–Einstein relation. If so, where does the energy go, or how is energy conservation understood in GR?
- How does light energy behave in different frames? Is there a difference when evaluated in free-falling (inertial) frames versus static (non-inertial) frames?
- The frequency of light changes due to spacetime deformation, but the coordinate speed of light also changes in non-inertial static frames. How does this affect the light energy?
- Adopting the geometric-optics treatment and setting aside quantum-field effects, we consider the locally measured energy and momentum of a photon to satisfy (equivalently and ). This raises questions about photon momentum in a gravitational field. Is photon momentum conserved in GR, and how does it depend on the frame in which it is evaluated? This problem has an analogue in dielectric media, known as the Abraham–Minkowski controversy, where competing theories predict different photon-momentum formulas [24,25,26,27,28,29,30].
2. Maxwell’s Equations in Static Riemann Space
- The electromagnetic four-potential
- The electromagnetic (Faraday) tensor
- The electromagnetic stress–energy tensor
- The four-momentum density vector , represented by the zeroth column of ,
3. Speed of Light in Static (Non-Inertial) Frames
3.1. Coordinate Speed of Light
3.2. Physical Speed of Light
3.3. High-Frequency Electromagnetic Waves
3.4. Four-Wave Vector of High-Frequency Electromagnetic Waves
3.5. Planck–Einstein Relation for Energy of Photons
4. Light Speed, Gravitational Redshift, and Photon Energy in the Schwarzschild Metric
5. Discussion
5.1. Energy Transfer Between Light and Static Gravitational Field
5.2. Modified Planck–Einstein Relation
5.3. Gravitational Field as an Analogue of a Dielectric Medium
5.4. Astrophysical Implications
- Neutron star mergers, which are the confirmed origin of short-duration gamma-ray bursts (GRBs), produce extremely intense and dynamic gravitational fields. These conditions give rise to significant gravitational redshift, affecting both the prompt gamma-ray emission and subsequent afterglow spectra [66,67].
- Accretion disks around compact objects, such as those in X-ray binaries and quasars, exhibit spectral line shifts and broadening due to gravitational redshift and relativistic effects [72].
5.5. Cosmological Implications
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Riemannian Manifold and Curvilinear Coordinate Systems
References
- Einstein, A. On the relativity principle and the conclusions drawn from it. Jahrb. Radioakt. Elektron. 1907, 4, 411–462. [Google Scholar]
- Einstein, A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Der Phys. 1911, 35, 898–908. [Google Scholar] [CrossRef]
- Pound, R.V.; Rebka, G.A. Apparent weight of photons. Phys. Rev. Lett. 1960, 4, 337–341. [Google Scholar] [CrossRef]
- Pound, R.V.; Snider, J.L. Effect of gravity on nuclear resonance. Phys. Rev. Lett. 1964, 13, 539–540. [Google Scholar] [CrossRef]
- Hafele, J.C.; Keating, R.E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science 1972, 177, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2006, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Wojtak, R.; Hansen, S.H.; Hjorth, J. Gravitational redshift of galaxies in clusters as predicted by general relativity. Nature 2011, 477, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Delva, P.; Puchades, N.; Schönemann, E.; Dilssner, F.; Courde, C.; Bertone, S.; Gonzalez, F.; Hees, A.; Le Poncin-Lafitte, C.; Meynadier, F.; et al. Gravitational Redshift Test Using Eccentric Galileo Satellites. Phys. Rev. Lett. 2018, 121, 231101. [Google Scholar] [CrossRef]
- Do, T.; Hees, A.; Ghez, A.; Martinez, G.D.; Chu, D.S.; Jia, S.; Sakai, S.; Lu, J.R.; Gautam, A.K.; O’Neil, K.K.; et al. Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole. Science 2019, 365, 664–668. [Google Scholar] [CrossRef]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 415. [Google Scholar] [CrossRef]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Robinson, J.M.; Oelker, E.; Staron, A.; Ye, J. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 2022, 620, 420. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, 1st ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Earman, J.; Glymour, C. The gravitational red shift as a test of general relativity: History and analysis. Stud. Hist. Philos. Sci. Part A 1980, 11, 175–214. [Google Scholar] [CrossRef]
- Wilhelm, K.; Dwivedi, B.N. On the gravitational redshift. New Astron. 2014, 31, 8–13. [Google Scholar] [CrossRef]
- Scott, R.B. Teaching the gravitational redshift: Lessons from the history and philosophy of physics. J. Phys. Conf. Ser. 2015, 600, 012055. [Google Scholar] [CrossRef]
- Brown, H.R.; Read, J. Clarifying possible misconceptions in the foundations of general relativity. Am. J. Phys. 2016, 84, 327–334. [Google Scholar] [CrossRef]
- Okun, L.B.; Selivanov, K.G.; Telegdi, V.L. On the interpretation of the redshift in a static gravitational field. Am. J. Phys. 2000, 68, 115–119. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: New York, NY, USA, 1971. [Google Scholar]
- Schutz, B. A First Course in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Obukhov, Y.N.; Hehl, F.W. Electromagnetic energy-momentum and forces in matter. Phys. Lett. A 2003, 311, 277–284. [Google Scholar] [CrossRef]
- Kemp, B.A. Resolution of the Abraham-Minkowski debate: Implications for the electromagnetic wave theory of light in matter. J. Appl. Phys. 2011, 109, 111101. [Google Scholar] [CrossRef]
- Baxter, C.; Loudon, R. Radiation Pressure and the Photon Momentum in Dielectrics. J. Mod. Opt. 2010, 57, 830–842. [Google Scholar] [CrossRef]
- Kemp, B.A.; Sheppard, C.J. Electromagnetic and material contributions to stress, energy, and momentum in metamaterials. Adv. Electromagn. 2017, 6, 11. [Google Scholar] [CrossRef]
- Partanen, M.; Häyrynen, T.; Oksanen, J.; Tulkki, J. Photon mass drag and the momentum of light in a medium. Phys. Rev. A 2017, 95, 063850. [Google Scholar] [CrossRef]
- Anghinoni, B.; Flizikowski, G.A.S.; Malacarne, L.C.; Partanen, M.; Bialkowski, S.E.; Astrath, N.G.C. On the formulations of the electromagnetic stress-energy tensor. Ann. Phys. 2022, 443, 169004. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Momentum of light in complex media. Turk. J. Phys. 2022, 46, 122–154. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Obukhov, Y.N. Electrodynamics in noninertial frames. Eur. Phys. J. C 2021, 81, 919. [Google Scholar] [CrossRef]
- Vavryčuk, V. Cosmological redshift and cosmic time dilation in the FLRW metric. Front. Phys. 2022, 10, 826188. [Google Scholar] [CrossRef]
- Vavryčuk, V. Gravitational orbits in the expanding Universe revisited. Front. Astron. Space Sci. 2023, 10, 1071743. [Google Scholar] [CrossRef]
- Vavryčuk, V. Considering light-matter interactions in Friedmann equations based on the conformal FLRW metric. J. Adv. Res. 2023, 46, 49–59. [Google Scholar] [CrossRef]
- Einstein, A. Relativity, the Special and the General Theory; Henry Holt and Company: New York, NY, USA, 1920; p. 168, Authorized translation by Robert W. Lawson. [Google Scholar]
- Møller, C. The Theory of Relativity; Clarendon Press: Oxford, UK, 1972. [Google Scholar]
- Stephani, H. Relativity: An Introduction to Special and General Relativity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Dicke, R.H. Gravitation without a Principle of Equivalence. Rev. Mod. Phys. 1957, 29, 363–376. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A New Basis for Cosmology. Proc. R. Soc. Lond. Ser. A 1938, 165, 199–208. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Large Numbers Hypothesis and the Einstein Theory of Gravitation. Proc. R. Soc. Lond. Ser. A 1979, 365, 19–30. [Google Scholar] [CrossRef]
- Moffat, J.W. Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology. Int. J. Mod. Phys. D 1993, 2, 351–365. [Google Scholar] [CrossRef]
- Albrecht, A.; Magueijo, J. Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 043516. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 043515. [Google Scholar] [CrossRef]
- Magueijo, J. New varying speed of light theories. Rep. Prog. Phys. 2003, 66, 2025–2068. [Google Scholar] [CrossRef]
- Magueijo, J. Bimetric varying speed of light theories and primordial fluctuations. Phys. Rev. D 2009, 79, 043525. [Google Scholar] [CrossRef]
- Moffat, J.W. Variable speed of light cosmology, primordial fluctuations and gravitational waves. Eur. Phys. J. C 2016, 76, 130. [Google Scholar] [CrossRef]
- Cook, R.J. Physical time and physical space in general relativity. Am. J. Phys. 2004, 72, 214–219. [Google Scholar] [CrossRef]
- Vavryčuk, V. The physical nature of the event horizon in the Schwarzschild black hole solution. Eur. Phys. J. Plus 2025, 140, 26. [Google Scholar] [CrossRef]
- Eddington, A. The Mathematical Theory of Relativity; Cambridge University Press: Cambridge, UK, 1923. [Google Scholar]
- Gordon, W. Zur Lichtfortpflanzung nach der Relativitätstheorie. Ann. Der Phys. 1923, 377, 421–456. [Google Scholar] [CrossRef]
- Plebanski, J. Electromagnetic Waves in Gravitational Fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- de Felice, F. On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 1971, 2, 347–357. [Google Scholar] [CrossRef]
- Ye, X.H.; Lin, Q. A simple optical analysis of gravitational lensing. J. Mod. Opt. 2008, 55, 1119–1126. [Google Scholar] [CrossRef]
- Genov, D.A.; Zhang, S.; Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 2009, 5, 687–692. [Google Scholar] [CrossRef]
- Sheng, C.; Liu, H.; Wang, Y.; Zhu, S.N.; Genov, D.A. Trapping light by mimicking gravitational lensing. Nat. Photonics 2013, 7, 902–906. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A.K. Trajectory of a light ray in Kerr field: A material medium approach. Astrophys. Space Sci. 2015, 360, 23. [Google Scholar] [CrossRef]
- Wilhelm, K.; Dwivedi, B.N. Gravitational redshift and the vacuum index of refraction. Astrophys. Space Sci. 2019, 364, 26. [Google Scholar] [CrossRef]
- Feng, G.; Huang, J. An optical perspective on the theory of relativity—I: Basic concepts and the equivalence principle. Optik 2020, 224, 165686. [Google Scholar] [CrossRef]
- Feng, G.; Huang, J. An optical perspective on the theory of relativity—II: Gravitational deflection of light and Shapiro time delay. Optik 2020, 224, 165685. [Google Scholar] [CrossRef]
- Feng, G.; Huang, J. An optical perspective on the theory of relativity—III: Gravitational redshift. Optik 2020, 224, 165684. [Google Scholar] [CrossRef]
- Falcón-Gómez, E.; Amor-Martín, A.; De La Rubia, V.; Santamaría-Botello, G.; De Falco, V.; Muñoz, L.E.G. Propagation of light in the presence of gravity generated by static and spherically symmetric curved space-times using Maxwell equations. Eur. Phys. J. C 2022, 82, 1175. [Google Scholar] [CrossRef]
- Herrera-Aguilar, A.; Nucamendi, U. Kerr black hole parameters in terms of the redshift/blueshift of photons emitted by geodesic particles. Phys. Rev. D 2015, 92, 045024. [Google Scholar] [CrossRef]
- GRAVITY Collaboration; Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; Brandner, W.; et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2018, 615, L15. [Google Scholar] [CrossRef]
- Nucamendi, U.; Herrera-Aguilar, A.; Lizardo-Castro, R.; López-Cruz, O. Toward the Gravitational Redshift Detection in NGC 4258 and the Estimation of Its Black Hole Mass-to-distance Ratio. Astrophys. J. Lett. 2021, 917, L14. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67–70. [Google Scholar] [CrossRef]
- Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Shen, H.; Chiba, S.; Toki, H. Postbounce Evolution of Core-Collapse Supernovae: Long-Term Effects of the Equation of State. Astrophys. J. 2005, 629, 922–932. [Google Scholar] [CrossRef]
- Kotake, K.; Sato, K.; Takahashi, K. Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep. Prog. Phys. 2006, 69, 971–1143. [Google Scholar] [CrossRef]
- Barstow, M.A.; Bond, H.E.; Holberg, J.B.; Burleigh, M.R.; Hubeny, I.; Koester, D. Hubble Space Telescope spectroscopy of the Balmer lines in Sirius B*. Mon. Not. R. Astron. Soc. 2005, 362, 1134–1142. [Google Scholar] [CrossRef]
- Joyce, S.R.G.; Barstow, M.A.; Holberg, J.B.; Bond, H.E.; Casewell, S.L.; Burleigh, M.R. The gravitational redshift of Sirius B. Mon. Not. R. Astron. Soc. 2018, 481, 2361–2370. [Google Scholar] [CrossRef]
- Reynolds, C.S. Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy. Space Sci. Rev. 2014, 183, 277–294. [Google Scholar] [CrossRef]
- Bon, N.; Bon, E.; Marziani, P.; Jovanović, P. Gravitational redshift of emission lines in the AGN spectra. Astrophys. Space Sci. 2015, 360, 7. [Google Scholar] [CrossRef]
- Fian, C.; Mediavilla, E.; Jiménez-Vicente, J.; Motta, V.; Muñoz, J.A.; Chelouche, D.; Hanslmeier, A. Revealing the structure of the lensed quasar Q 0957+561. II. Supermassive black hole mass via gravitational redshift. Astron. Astrophys. 2022, 667, A67. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Blandford, R.D.; Narayan, R. Cosmological applications of gravitational lensing. Annu. Rev. Astron. Astrophys. 1992, 30, 311–358. [Google Scholar] [CrossRef]
- Falcke, H.; Melia, F.; Agol, E. Viewing the Shadow of the Black Hole at the Galactic Center. Astrophys. J. Lett. 2000, 528, L13–L16. [Google Scholar] [CrossRef]
- Beloborodov, A.M. Gravitational Bending of Light Near Compact Objects. Astrophys. J. Lett. 2002, 566, L85–L88. [Google Scholar] [CrossRef]
- Vavryčuk, V. Time dilation observed in Type Ia supernova light curves and its cosmological consequences. Galaxies 2025, 13, 55. [Google Scholar] [CrossRef]
- Leibundgut, B.; Schommer, R.; Phillips, M.; Riess, A.; Schmidt, B.; Spyromilio, J.; Walsh, J.; Suntzeff, N.; Hamuy, M.; Maza, J.; et al. Time Dilation in the Light Curve of the Distant Type IA Supernova SN 1995K. Astrophys. J. Lett. 1996, 466, L21. [Google Scholar] [CrossRef]
- Goldhaber, G.; Deustua, S.; Gabi, S.; Groom, D.; Hook, I.; Kim, A.; Kim, M.; Lee, J.; Pain, R.; Pennypacker, C.; et al. Observation of cosmological time dilation using Type Ia supernovae as clocks. In Thermonuclear Supernovae; Ruiz-Lapuente, P., Canal, R., Isern, J., Eds.; NATO Advanced Study Institute (ASI) Series C; Springer: Dordrecht, The Netherlands, 1997; Volume 486, p. 777. [Google Scholar] [CrossRef]
- Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; et al. Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. Astrophys. J. 2001, 558, 359–368. [Google Scholar] [CrossRef]
- Phillips, M.M.; Lira, P.; Suntzeff, N.B.; Schommer, R.A.; Hamuy, M.; Maza, J. The Reddening-Free Decline Rate Versus Luminosity Relationship for Type IA Supernovae. Astron. J. 1999, 118, 1766–1776. [Google Scholar] [CrossRef]
- Foley, R.J.; Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Nugent, P.; Perlmutter, S. A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex. Astrophys. J. Lett. 2005, 626, L11–L14. [Google Scholar] [CrossRef]
- White, R.M.T.; Davis, T.M.; Lewis, G.F.; Brout, D.; Galbany, L.; Glazebrook, K.; Hinton, S.R.; Lee, J.; Lidman, C.; Möller, A.; et al. The Dark Energy Survey Supernova Program: Slow supernovae show cosmological time dilation out to z 1. Mon. Not. R. Astron. Soc. 2024, 533, 3365–3378. [Google Scholar] [CrossRef]
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49–59. [Google Scholar]
- Hubble, E. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef]
- Peacock, J.A. Cosmological Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Vavryčuk, V. Cosmological consequences of the Lorentz and Doppler transformations. Modern Physics Letters A 2024, 39, 2450098. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavryčuk, V. Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes. Symmetry 2025, 17, 1419. https://doi.org/10.3390/sym17091419
Vavryčuk V. Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes. Symmetry. 2025; 17(9):1419. https://doi.org/10.3390/sym17091419
Chicago/Turabian StyleVavryčuk, Václav. 2025. "Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes" Symmetry 17, no. 9: 1419. https://doi.org/10.3390/sym17091419
APA StyleVavryčuk, V. (2025). Generalized Planck–Einstein Relation in Curved Spacetimes: Implications for Light Propagation Near Black Holes. Symmetry, 17(9), 1419. https://doi.org/10.3390/sym17091419