Lightweight Financial Fraud Detection Using a Symmetrical GAN-CNN Fusion Architecture
Abstract
1. Introduction
2. Related Work
2.1. Traditional Financial Transaction Fraud Detection Methods
2.2. Deep Learning Based Fraud Methods for Financial Transactions
2.3. Attention Mechanism Based Financial Transaction Fraud Detection Method
3. Method
3.1. Overview
3.2. Sample Generation
3.3. Adaptive Aggregation Module
3.4. Attention Mechanisms
3.5. Feature-Response Fusion (FRFN)
3.6. Text Encoding
3.6.1. Time-Frequency Coding
3.6.2. Out-Degree Coding
3.6.3. Time-Frequency and Out-Degree Coding Fusion
4. Experiment
4.1. Datasets
4.2. Experimental Setup and Metrics
4.2.1. Experimental Setup and Realization
4.2.2. Metrics
4.3. Experimental Results
4.3.1. Experimental Results on YelpChi and Amazon Datasets
- Comparison of classification performance with different training ratios
- 2.
- Improvement in the effect of the attention mechanism on accuracy
- 3.
- Enhanced Recognition of Anomalous Structures
4.3.2. Model Compactness, Computational Efficiency, and Minority Class Recognition Capability Analysis
- Parameter scale and model compactness analysis: While most models achieve a classification accuracy of approximately 90%, this is typically accompanied by a large model parameter scale. For example, HHLN-GNN achieves an accuracy of 94.82% on the YelpChi dataset, with a parameter count of 5.5 M, while the symmetrical GAN-CNN model proposed in this paper maintains a slightly higher accuracy of 94.97% with a parameter count of only 4.92 M. Additionally, the classification accuracy of Symmetrical GAN-CNN is 94.97%, which is higher than that of CNN-GAN (94.52%) and hybrid CNN-LSTM–attention (94.75%). Furthermore, the GCN+SMOTE and CNN+SMOTE models have parameter counts of 36.4 M and 49.23 M, respectively, which are significantly higher than the model proposed in this paper. Overall, symmetrical GAN-CNN demonstrates superior performance in parameter count control, showcasing stronger model compression capabilities and deployment adaptability.
- Comparison of computational overhead under the GMACs metric: Compared with HHLN-GNN, the proposed model reduces computational overhead by 0.18 G, while it is slightly higher than GraphSAINT (+0.17 G). In addition, compared with GCN+SMOTE, CNN+SMOTE, CNN-GAN, and hybrid CNN-LSTM–attention, the symmetrical GAN-CNN reduces GMACs by 62%, 78%, 76%, and 67%, respectively, demonstrating its powerful lightweight advantages and inference efficiency. This performance is particularly critical in financial fraud detection tasks, effectively supporting real-time processing and providing a rapid response to large-scale, high-frequency transaction data, offering greater application value.
- Comprehensive evaluation of minority class recognition capabilities based on Precision, recall, and F1: To more comprehensively evaluate the model’s performance in minority class identification tasks, this paper introduces three additional metrics for supplementary analysis—precision, recall, and F1. On the YelpChi dataset, the symmetrical GAN-CNN model outperformed mainstream comparison models in recall, with improvements of 14.6%, 6.3%, 5.7%, and 5.6% compared with GraphConsis, CARE-GNN, CNN-GAN, and hybrid CNN-LSTM–attention models, respectively, significantly enhancing its ability to identify genuine fraudulent transactions. Additionally, compared with GCN+SMOTE and CNN+SMOTE models that employ oversampling strategies, the symmetrical GAN-CNN model achieved improvements of 6.2% and 8.4% in recall and 4.1% and 4.7% in F1, further validating its detection advantages in imbalanced data scenarios. Overall, symmetrical GAN-CNN outperformed the CNN-GAN and hybrid CNN-LSTM–attention models in F1 metrics, demonstrating stronger classification robustness and minority class sensitivity, making it suitable for practical applications such as identifying high-risk transactions.
4.4. Ablation Experiments
- Impact of category imbalance processing on experimental results
- 2.
- Impact of Attention Mechanism on Experimental Results
- 3.
- Impact of Context Encoding Module on Experimental Results
- 4.
- The Impact of Symmetry on Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AR-GCN | Adaptive receptive field graph convolutional network |
BN | Batch normalization |
CatBoost | Categorical boosting |
CM | Confusion matrix |
CNN | Convolutional neural network |
Conv | Convolution |
DWConv | Depthwise separable convolution |
FAGCN | Frequency adaptive graph convolutional network |
FN | False negative |
FP | False positive |
FRFN | Feature refined fusion network |
GAN | Generative adversarial network |
GAT | Graph attention network |
GCN | Graph convolutional network |
LN | Layer normalization |
OA | Overall aAccuracy |
SeLU | Scaled exponential linear unit |
SGC | Simplifying graph convolutional network |
SMOTE | Synthetic minority over-sampling technique |
TFE | Temporal frequency encoding |
TN | True negative |
TP | True positive |
XGBoost | Extreme Gradient Boosting |
References
- Tong, G.; Shen, J. Financial Transaction Fraud Detector Based on Imbalance Learning and Graph Neural Network. Appl. Soft Comput. 2023, 149, 18387–18399. [Google Scholar] [CrossRef]
- Lin, A.K. The AI Revolution in Financial Services: Emerging Methods for Fraud Detection and Prevention. J. Galaksi. 2024, 1, 43–51. [Google Scholar] [CrossRef]
- Devi, J.V.; Kavitha, K.S. Fraud detection in credit card transactions by using classification algorithms. In Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysore, India, 8–9 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 125–131. [Google Scholar] [CrossRef]
- Liu, G. Leveraging Machine Learning for Telecom Banking Card Fraud Detection: A Comparative Analysis of Logistic Regression, Random Forest, and XGBoost Models. Comput. Artif. Intell. 2024, 1, 13–27. [Google Scholar] [CrossRef]
- Ali, A.; Abd Razak, S.; Othman, S.H.; Eisa, T.A.E.; Al-Dhaqm, A.; Nasser, M.; Elha, T.; Elshafie, H.; Saif, A. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Appl. Sci. 2022, 12, 9637. [Google Scholar] [CrossRef]
- Wu, G.; He, X.; Li, M. Credit Evaluation Based on Improved Naive Bayesian Model. Adv. Appl. Math. 2019, 8, 1410–1417. [Google Scholar] [CrossRef]
- Thilagavathi, M.; Saranyadevi, R.; Vijayakumar, N.; Selvi, K.; Anitha, L.; Sudharson, K. AI-Driven Fraud Detection in Financial Transactions with Graph Neural Networks and Anomaly Detection. In Proceedings of the 2024 IEEE International Conference on Science Technology Engineering and Management (ICSTEM), Coimbatore, India, 26–27 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Li, S.; Zhou, J.; Mo, C.; Li, J.; Tso, G.K.; Tian, Y. Motif-Aware Temporal GCN for Fraud Detection in Signed Cryptocurrency Trust Networks. arXiv 2022, arXiv:2211.13123. [Google Scholar] [CrossRef]
- Nalayini, C.M.; Katiravan, J.; Sathyabama, A.R.; Rajasuganya, P.V.; Abirami, K. Identification and Detection of Credit Card Frauds Using CNN. In Proceedings of the International Conference on Computers, Management & Mathematical Sciences, Nirjuli, India, 29–30 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 267–280. [Google Scholar] [CrossRef]
- Wu, R. Financial Fraud Detection System Combining Generative Adversarial Networks and Deep Learning. In Proceedings of the 2024 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC), Wuhan, China, 20–22 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 105–110. [Google Scholar] [CrossRef]
- Fletcher, G.; Shi, T. Financial Fraud Detection with Self-Attention Mechanism: A Comparative Study. J. Comput. Sci. Softw. Appl. 2025, 5, 10–18. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, X.; Wu, M.; Kang, L. Advancing Financial Fraud Detection: Self-Attention Generative Adversarial Networks for Precise and Effective Identification. Finance Res. Lett. 2024, 60, 104843. [Google Scholar] [CrossRef]
- Gupta, A.; Lohani, M.C.; Manchanda, M. Financial Fraud Detection Using Naive Bayes Algorithm in Highly Imbalance Data Set. J. Discret. Math. Sci. Cryptogr. 2021, 24, 1559–1572. [Google Scholar] [CrossRef]
- Shaohui, D.; Qiu, G.; Mai, H.; Yu, H. Customer Transaction Fraud Detection Using Random Forest. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 144–147. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y. Credit Card Fraud Detection Using Logistic Regression. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 301–305. [Google Scholar] [CrossRef]
- Aburbeian, A.M.; Ashqar, H.I. Credit Card Fraud Detection Using Enhanced Random Forest Classifier for Imbalanced Data. In Proceedings of the International Conference on Advances in Computing Research, Orlando, FL, USA, 8–10 May 2023; Springer Nature: Cham, Switzerland, 2023; pp. 605–616. [Google Scholar] [CrossRef]
- Afriyie, J.K.; Tawiah, K.; Pels, W.A.; Addai-Henne, S.; Dwamena, H.A.; Owiredu, E.O.; Ayeh, A.; Eshun, J. A Supervised Machine Learning Algorithm for Detecting and Predicting Fraud in Credit Card Transactions. Decis. Anal. J. 2023, 6, 100163. [Google Scholar] [CrossRef]
- Li, C.; Geng, Y. Research on Credit Scoring Based on BLS-Classifier. Finance 2020, 10, 548–559. [Google Scholar] [CrossRef]
- Zhu, X.; Ao, X.; Qin, Z.; Chang, Y.; Liu, Y.; He, Q.; Li, J. Intelligent Financial Fraud Detection Practices in Post-Pandemic Era. Innovation 2021, 2, 18387–18399. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gunjan, V.K.; Ansari, M.D.; Pathak, R. Credit card fraud detection using support vector machine. In Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2021, Hyderabad, India, 28–29 March 2021; Springer: Singapore, 2021; pp. 27–37. [Google Scholar] [CrossRef]
- Obeng, S.; Iyelolu, T.V.; Akinsulire, A.A.; Idemudia, C. Utilizing Machine Learning Algorithms to Prevent Financial Fraud and Ensure Transaction Security. World J. Adv. Res. Rev. 2024, 23, 1972–1980. [Google Scholar] [CrossRef]
- Ahmad, N. Deep Learning for Fraud Detection in Financial Transactions: A Novel Approach to Detect Hidden Anomalies. MCS 2024. [Google Scholar]
- Cheng, Y.; Guo, J.; Long, S.; Wu, Y.; Sun, M.; Zhang, R. Advanced Financial Fraud Detection Using GNN-CL Model. In Proceedings of the 2024 International Conference on Computers, Information Processing and Advanced Education (CIPAE), Ottawa, ON, Canada, 26–28 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 453–460. [Google Scholar] [CrossRef]
- Yadegar, M.M.; Rahmani, H. FinFD-GCN: Using Graph Convolutional Networks for Fraud Detection in Financial Data. J. Artif. Intell. Data Min. 2024, 12, 487–495. [Google Scholar] [CrossRef]
- Khosravi, S.; Kargari, M.; Teimourpour, B.; Talebi, M. Transaction Fraud Detection via Attentional Spatial–Temporal GNN. J. Supercomput. 2025, 81, 537. [Google Scholar] [CrossRef]
- Wei, S.; Lee, S. Financial Anti-Fraud Based on Dual-Channel Graph Attention Network. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 297–314. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Huang, J.; Wu, J.; Zhou, C.; Yang, J.; Gao, J. eFraudCom: An E-Commerce Fraud Detection System via Competitive Graph Neural Networks. ACM Trans. Inf. Syst. (TOIS) 2022, 40, 1–29. [Google Scholar] [CrossRef]
- Karthika, J.; Senthilselvi, A. Smart Credit Card Fraud Detection System Based on Dilated Convolutional Neural Network with Sampling Technique. Multimed. Tools Appl. 2023, 82, 31691–31708. [Google Scholar] [CrossRef]
- Cheah, P.C.Y.; Yang, Y.; Lee, B.G. Enhancing Financial Fraud Detection Through Addressing Class Imbalance Using Hybrid SMOTE-GAN Techniques. Int. J. Financ. Stud. 2023, 11, 110. [Google Scholar] [CrossRef]
- Strelcenia, E.; Prakoonwit, S. A Survey on GAN Techniques for Data Augmentation to Address the Imbalanced Data Issues in Credit Card Fraud Detection. Mach. Learn. Knowl. Extr. 2023, 5, 304–329. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Ma, Y.; Yang, D.; Sun, S. Internet Financial Fraud Detection Based on Graph Learning. IEEE Trans. Comput. Soc. Syst. 2022, 10, 1394–1401. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, G.; Wang, S.; Peng, X.; Ziqi, W.; Mao, J.; Wu, H.; Jiang, X.; Wang, K. Cat-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks. arXiv 2024, arXiv:2402.14708. [Google Scholar]
- Xie, Y.; Liu, G.; Zhou, M.; Wei, L.; Zhu, H.; Zhou, R.; Cao, L. A Spatial–Temporal Gated Network for Credit Card Fraud Detection by Learning Transactional Representations. IEEE Trans. Autom. Sci. Eng. 2023, 21, 6978–6991. [Google Scholar] [CrossRef]
- Yu, C.; Xu, Y.; Cao, J.; Zhang, Y.; Jin, Y.; Zhu, M. Credit Card Fraud Detection Using Advanced Transformer Model. In Proceedings of the 2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom), Hong Kong, China, 12–14 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 343–350. [Google Scholar] [CrossRef]
- Ghosh, C.; Chowdhury, A.; Das, N.; Sadhukhan, B. Enhancing Financial Fraud Detection in Bitcoin Networks Using Ensemble Deep Learning. In Proceedings of the 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), New Raipur, India, 6–8 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Lu, M.; Jia, X.; Liu, R.; Zhou, X.; Zhang, Y. Internet Financial Credit Risk Assessment with Sliding Window and Attention Mechanism LSTM Model. Teh. Vjesn. 2023, 30, 1–7. [Google Scholar] [CrossRef]
- Liu, H.L.; Cao, S.J.; Xu, J.Y.; Chen, S.H. Anti-Fraud Research Advances on Digital Credit Payment. J. Front. Comput. Sci. Technol. 2023, 17, 2300–2324. [Google Scholar] [CrossRef]
- Hong, B.; Lu, P.; Chen, R.; Lin, K.; Yang, F. Health Insurance Fraud Detection via Multiview Heterogeneous Information Networks with Augmented Graph Structure Learning. IEEE Trans. Comput. Soc. Syst. 2024, 17, 1–21. [Google Scholar] [CrossRef]
- Lou, C.; Wang, Y.; Li, J.; Qian, Y.; Li, X. Graph Neural Network for Fraud Detection via Context Encoding and Adaptive Aggregation. Expert Syst. Appl. 2025, 261, 125473. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar] [CrossRef]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K.Q. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Ma, X.; Li, Z.; Xu, L.; Song, G.; Li, Y.; Shi, C. Learning Discrete Adaptive Receptive Fields for Graph Convolutional Networks. Sci. China Inf. Sci. 2023, 66, 222101. [Google Scholar] [CrossRef]
- Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond Low-Frequency Information in Graph Convolutional Networks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 3950–3957. [Google Scholar] [CrossRef]
- Hiremath, A.C.; Arya, A.; Sriranga, L.; Reddy, K.V.S.R.; Nikhil, M. Ensemble of Graph Neural Networks for Enhanced Financial Fraud Detection. In Proceedings of the 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, 5 April 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Ning, Z.; Wang, Z.; Zhang, R.; Xu, P.; Liu, K.; Wang, P.; Ju, W.; Wang, P.; Zhou, Y.; Cambria, E. Deep Cut-Informed Graph Embedding and Clustering. arXiv 2024, arXiv:2503.06635. [Google Scholar] [CrossRef]
- Kanezashi, H.; Suzumura, T.; Liu, X.; Hirofuchi, T. Ethereum Fraud Detection with Heterogeneous Graph Neural Networks. arXiv 2022, arXiv:2203.12363. [Google Scholar] [CrossRef]
- Zeng, H.; Zhou, H.; Srivastava, A.; Kannan, R.; Prasanna, V. GraphSAINT: Graph Sampling-Based Inductive Learning Method. arXiv 2019, arXiv:1907.04931. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, M.; Du, J.W. Multi-View Graph Neural Network for Fraud Detection Algorithm. J. Commun./Tongxin Xuebao 2022, 43, 225–232. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, Z.; Sun, L.; Deng, Y.; Peng, H.; Yu, P.S. Enhancing Graph Neural Network-Based Fraud Detectors against Camouflaged Fraudsters. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Beijing, China, 3–7 November 2020; pp. 315–324. [Google Scholar] [CrossRef]
- Singh, A.; Tanwar, S. Revolutionizing Online Transaction Safety with CNN and GAN-Based Fraud Detection Strategies. In Proceedings of the 2024 Asia Pacific Conference on Innovation in Technology (APCIT), Mysore, India, 26–27 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Akour, I.; Mohamed, N.; Salloum, S. Hybrid CNN-LSTM with Attention Mechanism for Robust Credit Card Fraud Detection. IEEE Access 2025, 13, 114056–114068. [Google Scholar] [CrossRef]
- Gupta, V.; Mishra, N.; Dash, Y.; Kumar, U.; Abraham, A. Graph Convolutional Network-Driven Adaptive Learning Framework for Fraud Detection in Complex Transactional Cryptonetworks. In Proceedings of the 2025 3rd International Conference on Communication, Security, and Artificial Intelligence (ICCSAI), Greater Noida, India, 4–6 April 2025; IEEE: Piscataway, NJ, USA, 2025; Volume 3, pp. 685–689. [Google Scholar] [CrossRef]
- Markova, M. A Comparison of Deep Neural Network and Convolutional Neural Network for Credit Card Fraud Detection. In Proceedings of the International Conference on New Trends in the Applications of Differential Equations in Sciences, Cham, Switzerland, 7–10 July 2024; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 405–418. [Google Scholar]
Methods | Kernel Size | Input Channel | Output Channel | Layer | Parameters | Total (M) |
---|---|---|---|---|---|---|
Ordinary | 3 × 3 | 1024 | 1024 | 1024 × 1024 × 3 × 3 = 9,437,184 | ≈28.3 M | |
1024 × 1024 × 3 × 3 = 9,437,184 | ||||||
1024 × 1024 × 3 × 3 = 9,437,184 | ||||||
5 × 5 | 1024 | 1024 | 1024 × 1024 × 5 × 5 = 26,214,400 | ≈78.6 M | ||
1024 × 1024 × 5 × 5 = 26,214,400 | ||||||
1024 × 1024 × 5 × 5 = 26,214,400 | ||||||
Depthwise Separable | 3 × 3 | 1024 | 1024 | 1024 × 1024 × 3 × 3 = 9,437,184 | ≈9.4 M | |
5 × 5 | 1024 | 1024 | 1024 × 1024 × 5 × 5 = 26,214,400 | ≈26.2 M | ||
Dataset | YelpChi | Amazon |
---|---|---|
Nodes | 45,954 | 11,944 |
edges | 3,846,979 | 4,398,392 |
(fraud%) | 14.5% | 10% |
Relation | R-U-R, R-S-R, R-T-R | U-P-U, U-S-U, U-V-U |
Project | Content |
---|---|
CPU | Intel Core i7-4700, 2.70 GHz × 12 |
Memory | 32 GB |
Operating system | CentOS 7.8 64-bit |
Hard disk | 1TB |
GPU | Nvidia Titan-X × 2 |
Python | 3.7.2 |
PyTorch | 1.4.0 |
CUDA | 10.0 |
Learning rate | 10–3 |
Momentum | 0.73 |
Weight decay | 5 × 10–4 |
Batch | 16 |
Saturation | 1.7 |
Subdivisions | 64 |
Method | YelpChi | Amazon | |
---|---|---|---|
20% | 50% | 50% | |
XGBoost [40] | 85.47 ± 0.28 | 87.92 ± 0.29 | 88.79 ± 0.41 |
CatBoost [40] | 92.11 ± 0.21 | 95.09 ± 0.22 | 93.49 ± 0.29 |
GCN [41] | 87.42 ± 0.27 | 91.04 ± 0.21 | 94.81 ± 0.22 |
SGC [42] | 85.95 ± 0.22 | 90.11 ± 0.25 | 96.72 ± 0.12 |
GAT [41] | 91.28 ± 0.15 | 94.77 ± 0.12 | 93.52 ± 0.34 |
AR-GCN [43] | 91.82 ± 0.15 | 95.02 ± 0.19 | 96.42 ± 0.39 |
FAGCN [44] | 91.44 ± 0.14 | 94.82 ± 0.17 | 92.87 ± 0.28 |
FdGars [45] | 92.15 ± 0.19 | 94.92 ± 0.14 | 96.44 ± 0.52 |
GEM [46] | 91.79 ± 0.19 | 92.95 ± 0.24 | 93.96 ± 0.34 |
GraphSAGE [47] | 88.94 ± 0.21 | 91.45 ± 0.27 | 91.46 ± 0.27 |
GraphSAINT [48] | 92.48 ± 0.15 | 95.77 ± 0.21 | 96.77 ± 0.31 |
GraphConsis [49] | 91.22 ± 0.22 | 94.84 ± 0.09 | 94.84 ± 0.09 |
CARE-GNN [50] | 91.47 ± 0.28 | 94.52 ± 0.15 | 94.63 ± 0.16 |
HHLN-GNN [1] | 94.82 ± 0.14 | 95.97 ± 0.21 | 94.92 ± 0.18 |
GCN+SMOTE [51] | 93.67 ± 0.15 | 96.86 ± 0.12 | 94.79 ± 0.15 |
CNN+SMOTE [52] | 93.58 ± 0.17 | 96.78 ± 0.13 | 94.68 ± 0.22 |
CNN-GAN [53] | 94.52 ± 0.22 | 94.52±0.22 | 94.73±0.16 |
Hybrid CNN-LSTM–attention [54] | 94.75 ± 0.13 | 96.89 ± 0.15 | 95.67 ± 0.23 |
Proposed | 94.97 ± 0.22 | 97.15 ± 0.25 | 96.37 ± 0.23 |
Method | Acc (%) | Parameters (M) | GMACs (G) | Precision | Recall | F1 |
---|---|---|---|---|---|---|
XGBoost [40] | 85.47 | 1.2 | 0.01 | — | — | — |
CatBoost [40] | 92.11 | 1.5 | 0.02 | — | — | — |
GCN [41] | 87.42 | 2.8 | 0.2 | — | 0.5211 | 0.5533 |
SGC [42] | 85.95 | 2 | 0.25 | — | — | — |
GAT [41] | 91.28 | 2.5 | 0.5 | — | 0.5386 | 0.4649 |
AR-GCN [43] | 91.82 | 4.2 | 0.55 | — | — | — |
FAGCN [44] | 91.44 | 4.5 | 0.5 | — | — | — |
FdGars [45] | 92.15 | 4.8 | 0.55 | — | — | — |
GEM [46] | 91.79 | 5 | 0.7 | — | — | — |
GraphSAGE [47] | 88.94 | 2.2 | 0.4 | — | 0.5266 | 0.5471 |
GraphSAINT [48] | 92.48 | 2.8 | 0.45 | — | — | — |
GraphConsis [49] | 91.22 | 4 | 0.48 | — | 0.6208 | 0.6070 |
CARE-GNN [50] | 91.47 | 5.1 | 0.75 | — | 0.7038 | 0.6138 |
HHLN-GNN [1] | 94.82 | 5.5 | 0.8 | 0.968 | 0.723 | 0.812 |
GCN+SMOTE [51] | 93.67 | 36.4 | 1.63 | 0.945 | 0.705 | 0.782 |
CNN+SMOTE [52] | 93.58 | 49.23 | 2.79 | 0.937 | 0.683 | 0.776 |
CNN-GAN [53] | 94.52 | 42.37 | 2.56 | 0.952 | 0.710 | 0.791 |
Hybrid CNN-LSTM–attention [54] | 94.75 | 39.65 | 1.87 | 0.961 | 0.711 | 0.807 |
Proposed | 94.97 | 4.92 | 0.62 | 0.971 | 0.767 | 0.823 |
Module Configuration | Accuracy (%) |
---|---|
Baseline (total removal) | 90.31 |
+Category imbalance processing (GAN sample generation) | 94.97 |
Module Configuration | Accuracy (%) |
---|---|
+Category imbalance processing (GAN sample generation) | 91.25 |
+Category Imbalance Processing + Attention Mechanism | 94.97 |
Module Configuration | Accuracy (%) |
---|---|
+Category Imbalance Handling + Attention Mechanism | 92.31 |
+Category Imbalance Handling + Attention Mechanism + Context Encoding | 94.97 |
Module Configuration | Accuracy (%) |
---|---|
With symmetry module | 94.97 |
Without symmetry module | 92.16 |
Use weight sharing | 94.97 |
Remove weight sharing | 93.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xu, C.; Tian, G. Lightweight Financial Fraud Detection Using a Symmetrical GAN-CNN Fusion Architecture. Symmetry 2025, 17, 1366. https://doi.org/10.3390/sym17081366
Yang Y, Xu C, Tian G. Lightweight Financial Fraud Detection Using a Symmetrical GAN-CNN Fusion Architecture. Symmetry. 2025; 17(8):1366. https://doi.org/10.3390/sym17081366
Chicago/Turabian StyleYang, Yiwen, Chengjun Xu, and Guisheng Tian. 2025. "Lightweight Financial Fraud Detection Using a Symmetrical GAN-CNN Fusion Architecture" Symmetry 17, no. 8: 1366. https://doi.org/10.3390/sym17081366
APA StyleYang, Y., Xu, C., & Tian, G. (2025). Lightweight Financial Fraud Detection Using a Symmetrical GAN-CNN Fusion Architecture. Symmetry, 17(8), 1366. https://doi.org/10.3390/sym17081366