Ensemble-Based Susceptibility Modeling with Predictive Symmetry Optimization: A Case Study from Mount Tai, China
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area Overview
2.2. Data Sources
2.3. Geohazard Inventory Data
2.4. Causative Factors
2.4.1. Topographic Factors
2.4.2. Hydrological Factors
2.4.3. Anthropogenic Factors
2.4.4. Vegetation Factors
3. Methodology
3.1. Spearman’s Rank Correlation Analysis
3.2. Modeling Framework
3.2.1. Base Models
Support Vector Machine (SVM)
Random Forest (RF)
Logistic Regression (LR)
Gradient Boosting Decision Tree (GBDT)
Multilayer Perceptron (MLP)
eXtreme Gradient Boosting (XGBoost)
3.2.2. Adaptive Weighted Ensemble Model
Prediction Correlation Analysis
Weighted Ensemble Definition
Weight Optimization
3.3. Hyperparameter Tuning Methods
3.4. Validation Approaches
3.4.1. SHAP (SHapley Additive exPlanations)
3.4.2. AUC-ROC Curve Analysis
3.5. Experimental Design
4. Results
4.1. Correlation Analysis Results
4.2. SHAP Interpretation Results
4.3. Individual vs. Ensemble Model Performance
4.4. Geospatial Visualization of Model Outputs
4.5. Model Adaptability Verification
5. Discussion
5.1. Predictive Accuracy Across Models
5.2. Factor Importance Evaluation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokhtari, M.; Faridi, P.; Masoodi, M.; Ahmadi, S.M. Perspective chapter: A global view of natural hazards related disasters. In Natural Hazards-New Insights; IntechOpen: London, UK, 2023. [Google Scholar]
- Xiao, W.; Zhou, Z.; Ren, B.; Deng, X. Integrating spatial clustering and multi-source geospatial data for comprehensive geological hazard modeling in Hunan Province. Sci. Rep. 2025, 15, 1982. [Google Scholar] [CrossRef] [PubMed]
- Comegna, L.; Rianna, G.; Sequino, G.; Reder, A.; Picarelli, L.; Urciuoli, G. Climate change and landslide hazard in stiff clays and clay shales. Landslides 2025. [Google Scholar] [CrossRef]
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Handy, R.L. The arch in soil arching. J. Geotech. Eng. 1985, 111, 302–318. [Google Scholar] [CrossRef]
- Shao, C.; Liu, Y.; Lan, H.; Li, L.; Liu, S.; Yan, Z.; Li, Y. Spatiotemporal distribution characteristics, causes, and prevention advice of fatal geohazards in Jiangxi Province, China. Sci. Total Environ. 2022, 834, 155337. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Yuan, X.; Wang, R. Analysis of the geomorphology and environmental geological problems of Huzhou on the Yangtze River delta. Acta Geol. Sin.-Engl. Ed. 2004, 78, 808–812. [Google Scholar] [CrossRef]
- Pandey, A.C.; Singh, S.K.; Nathawat, M.S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat. Hazards 2010, 55, 273–289. [Google Scholar] [CrossRef]
- Huang, P.; Peng, L.; Pan, H. Linking the random forests model and GIS to assess geo-hazards risk: A case study in Shifang County, China. IEEE Access 2020, 8, 28033–28042. [Google Scholar] [CrossRef]
- Chen, B.; Wei, N.; Qu, T.; Zhang, L.; Li, Y.; Long, X.; Lin, Y. Research on weighting method of geological hazard susceptibility evaluation index based on apriori Algorithm. Front. Earth Sci. 2023, 11, 1127889. [Google Scholar] [CrossRef]
- Thapa, I.; Ghani, S.; Kumari, S.; Choudhary, A.; Sivenas, T.; Asteris, P.G. Geotechnical Characterization and Stability Prediction of Nano-Silica-Stabilized Slopes: A Machine Learning Approach to Mitigating Geological Hazards. Transp. Infrastruct. Geotechnol. 2025, 12, 89. [Google Scholar] [CrossRef]
- Ahmad, H.; Ningsheng, C.; Rahman, M.; Islam, M.M.; Pourghasemi, H.R.; Hussain, S.F.; Habumugisha, J.M.; Liu, E.; Zheng, H.; Ni, H. Geohazards susceptibility assessment along the upper indus basin using four machine learning and statistical models. ISPRS Int. J. Geo-Inf. 2021, 10, 315. [Google Scholar] [CrossRef]
- Yu, B.; Xing, H.; Yan, J.; Li, Y. Small-scale, large impact: Utilizing machine learning to assess susceptibility to urban geological disasters—A case study of urban road collapses in Hangzhou. Bull. Eng. Geol. Environ. 2024, 83, 454. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, J.; Huang, L.; Li, X. Assessment of landslide susceptibility in xinyuan county based on machine learning models. Sci. Technol. Eng. 2025, 25, 1815–1826. [Google Scholar] [CrossRef]
- Sarkar, P.; Mondal, M.; Sarkar, A.; Gayen, S.K. Landslide susceptibility assessment for the Darjeeling Toy Train route: A GIS and machine learning approach. Stoch. Environ. Res. Risk Assess. 2024, 39, 613–637. [Google Scholar] [CrossRef]
- Hailu, S.; Deribew, K.T.; Teferi, E.; Moisa, M.B.; Roba, Z.R.; Dagne, S.S.; Woldetsadik, M. Spatial assessment employing fusion logistic regression and frequency ratio models to monitor landslide susceptibility in the upper Blue Nile basin of Ethiopia: Muger watershed. Environ. Syst. Res. 2024, 13, 54. [Google Scholar] [CrossRef]
- Jin, R.; Wang, S.; Liu, J. Multi-Index Fusion Debris Flow Early Warning Model Based on Spatial Interpolation and Support Vector Machine. Water 2024, 16, 724. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, A.; Ma, F.; Dai, F.; Jiang, Y.; Li, H. Comparison of debris flow susceptibility assessment methods: Support vector machine, particle swarm optimization, and feature selection techniques. J. Mt. Sci. 2024, 21, 397–412. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Boning, D.; Hsieh, C.-J. Robust decision trees against adversarial examples. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1122–1131. [Google Scholar]
- Yamagata, T. Reducing model biases is essential to projecting future climate variability. Natl. Sci. Rev. 2021, 8, nwab080. [Google Scholar] [CrossRef]
- Strocchi, F. Symmetry Breaking; Springer: Berlin/Heidelberg, Germany, 2005; Volume 643. [Google Scholar]
- Lee, H.; Chen, S. Systematic bias of machine learning regression models and correction. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 4974–4983. [Google Scholar] [CrossRef] [PubMed]
- Xian, L.; Ji, M.; Liu, F.; Li, Q. Assessing Geological Disaster Susceptibility in Taishan Area by Coupling Certainty Factor Model with Optimized Random Forest Model. Bull. Soil Water Conserv. 2024, 44, 134–143. [Google Scholar] [CrossRef]
- Wang, S.J.; Wan, Y.S. Precambrian geology and geoparks in Shandong province, China. North China Geol. 2022, 45, 18–36. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022. Earth Syst. Sci. Data 2023, 13, 3907–3925. [Google Scholar] [CrossRef]
- Tak, G.-M.; Park, J.-H.; Lee, C.-K.; Kim, H. Influence of altitude, slope, and waterway characteristics on the occurrence of slow-moving landslides in South Korea. Front. Earth Sci. 2023, 11, 1276768. [Google Scholar] [CrossRef]
- Xie, C.; Huang, Y.; Li, L.; Li, T.; Xu, C. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County, Guangdong Province, China in August 2018. Sustainability 2023, 15, 13930. [Google Scholar] [CrossRef]
- Farzam, M.; Ejtehadi, H. Effects of drought and slope aspect on canopy facilitation in a mountainous rangeland. J. Plant Ecol. 2017, 10, 626–633. [Google Scholar] [CrossRef]
- Yang, W.; Niu, R.; Si, R.; Li, J. Geological hazard susceptibility analysis and developmental characteristics based on slope unit, using the xinxian county, henan province as an example. Sensors 2024, 24, 2457. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, K.; Yang, M.; Meng, H.; Li, P. The effect of roughness and rainfall on hydrodynamic properties of overland flow. Hydrol. Res. 2019, 50, 1324–1343. [Google Scholar] [CrossRef]
- Ferrer-Boix, C.; Chartrand, S.M.; Hassan, M.A.; Martín-Vide, J.P.; Parker, G. On how spatial variations of channel width influence river profile curvature. Geophys. Res. Lett. 2016, 43, 6313–6323. [Google Scholar] [CrossRef]
- Xue, X.W.; Chen, X.; Zhang, Z.C.; Qin, N.X. Categorization of karst landform on the basis of landform factor eigenvalue. Carsologica Sin. 2009, 28, 175–180. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Lian, Z.; Li, F.; Pang, L.; Xin, Y. Influence of buffer distance on environmental geological hazard susceptibility assessment. Environ. Sci. Pollut. Res. 2024, 31, 9582–9595. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wang, Q.; Yue, J.; Xing, Y. Analysis of optimal Buffer distance for linear hazard factors in landslide susceptibility prediction. Sustainability 2023, 15, 10180. [Google Scholar] [CrossRef]
- Feng, B.; Cheng, X.; Fan, F.; Lu, H.; Li, R.; Wei, B. Geological hazard risk assessment based on Information Model: A case study of Lufeng City in Yunnan Province. World Nucl. Geosci. 2024, 41, 1260–1274. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Daleles Rennó, C. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, S.; Zhou, J.; Sun, Y.; Ding, D.; Li, J. Geological disaster susceptibility evaluation of a random-forest-weighted deterministic coefficient model. Sustainability 2023, 15, 12691. [Google Scholar] [CrossRef]
- Huangfu, W.; Wu, W.; Zhou, X.; Lin, Z.; Zhang, G.; Chen, R.; Song, Y.; Lang, T.; Qin, Y.; Ou, P. Landslide geo-hazard risk mapping using logistic regression modeling in Guixi, Jiangxi, China. Sustainability 2021, 13, 4830. [Google Scholar] [CrossRef]
- Cui, S.; Sudjianto, A.; Zhang, A.; Li, R. Enhancing robustness of gradient-boosted decision trees through one-hot encoding and regularization. arXiv 2023, arXiv:2304.13761. [Google Scholar] [CrossRef]
- Li, H.; Gao, W.; Xie, J.; Yen, G.G. Multiobjective bilevel programming model for multilayer perceptron neural networks. Inf. Sci. 2023, 642, 119031. [Google Scholar] [CrossRef]
- Castro, W.; Oblitas, J.; Santa-Cruz, R.; Avila-George, H. Multilayer perceptron architecture optimization using parallel computing techniques. PLoS ONE 2017, 12, e0189369. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, K.; Wang, L.; Zhang, Z.; Ye, X.; Zhang, J.; Li, H. Prediction of thermal protection performance and empirical study of flame-retardant cotton based on a combined model. Front. Mater. 2024, 11, 1454935. [Google Scholar] [CrossRef]
- Wang, Y.; Lang, J.; Zuo, J.Z.; Dong, Y.; Hu, Z.; Xu, X.; Zhang, Y.; Wang, Q.; Yang, L.; Wong, S.T. The radiomic-clinical model 788 using the SHAP method for assessing the treatment response of whole-brain radiotherapy: A multicentric study. Eur. Radiol. 2022, 32, 8737–8747. [Google Scholar] [CrossRef]
- Zeng, T.R.; Wang, L.F.; Zhang, Y.; Cheng, P.; Wu, F. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model. Chin. J. Geol. Hazard Control 2024, 35, 37–50. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-geohazards susceptibility mapping based on machine learning—A case study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, X.; Zhou, G.; Fan, C.; Ding, P.; Chen, Q. An online physical-based multiple linear regression model for building’s hourly cooling load prediction. Energy Build. 2022, 254, 111574. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? Adv. Neural Inf. Process. Syst. 2022, 35, 507–520. [Google Scholar] [CrossRef]
Extremely Low (Km2) | Low (Km2) | Medium (Km2) | High (Km2) | Extremely High (Km2) | |
---|---|---|---|---|---|
RF | 51.59 | 32.00 | 19.03 | 18.33 | 8.89 |
SVM | 24.70 | 31.34 | 37.52 | 25.29 | 10.97 |
LR | 16.13 | 23.08 | 36.64 | 38.76 | 16.22 |
GBDT | 46.57 | 32.83 | 21.64 | 20.38 | 8.43 |
XGB | 45.67 | 30.40 | 21.13 | 21.32 | 11.30 |
MLP | 23.72 | 37.41 | 38.38 | 22.68 | 7.64 |
XGB + MLP | 25.73 | 39.70 | 34.17 | 22.27 | 7.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, B.; Liu, P.; Duan, X.; Ji, Z.; Feng, C.; Tan, X.; Zhang, Y.; Cui, F. Ensemble-Based Susceptibility Modeling with Predictive Symmetry Optimization: A Case Study from Mount Tai, China. Symmetry 2025, 17, 1353. https://doi.org/10.3390/sym17081353
Zhao Z, Chen B, Liu P, Duan X, Ji Z, Feng C, Tan X, Zhang Y, Cui F. Ensemble-Based Susceptibility Modeling with Predictive Symmetry Optimization: A Case Study from Mount Tai, China. Symmetry. 2025; 17(8):1353. https://doi.org/10.3390/sym17081353
Chicago/Turabian StyleZhao, Zhuang, Bin Chen, Pan Liu, Xiong Duan, Zhonglin Ji, Changjuan Feng, Xin Tan, Yixin Zhang, and Fuhai Cui. 2025. "Ensemble-Based Susceptibility Modeling with Predictive Symmetry Optimization: A Case Study from Mount Tai, China" Symmetry 17, no. 8: 1353. https://doi.org/10.3390/sym17081353
APA StyleZhao, Z., Chen, B., Liu, P., Duan, X., Ji, Z., Feng, C., Tan, X., Zhang, Y., & Cui, F. (2025). Ensemble-Based Susceptibility Modeling with Predictive Symmetry Optimization: A Case Study from Mount Tai, China. Symmetry, 17(8), 1353. https://doi.org/10.3390/sym17081353