Visual Attention Fusion Network (VAFNet): Bridging Bottom-Up and Top-Down Features in Infrared and Visible Image Fusion
Abstract
1. Introduction
- We propose a real-time visual attention image fusion network, which can achieve superior performance in both excellent visual perception and improve object detection tasks.
- We design a bidirectional attention integration mechanism to integrate multi-layer bottom-up features and object attention signals, which can effectively enhance object attention signals and extract relevant features of two forms of attention.
- A series of experiments on public and collected datasets show that the proposed method not only has better qualitative and quantitative evaluation results than seven SOTA methods but also can serve as a pre-processing module for the object detection task.
2. Related Work
2.1. Image Fusion Methods
2.1.1. Traditional Image Fusion Methods
2.1.2. Deep Learning-Based Image Fusion Methods
2.2. Visual Attention for Image Fusion
3. Method
3.1. Overview
3.2. Bottom-Up Process
3.3. Top-Down Process
3.3.1. Cross Modal Attention Module
3.3.2. Cross-Scale Attention Module
3.4. Bidirectional Attention Integration Mechanism
3.4.1. Object Attention Enhancement Module
3.4.2. Attention Guidance Module
3.5. Loss Function
4. Experiment
4.1. Experimental Settings
4.2. Implementation Details
4.3. Comparative Experiment
4.3.1. Qualitative Evaluation
4.3.2. Quantitative Evaluation
4.4. Generalization Experiment
4.4.1. Qualitative Evaluation
4.4.2. Quantitative Evaluation
4.5. Evaluation on Surveillance Application
4.5.1. Qualitative Evaluation
4.5.2. Quantitative Evaluation
4.6. Evaluation on Infrared-Visible Object Detection
4.7. Efficiency Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, H.; Koundal, D.; Kadyan, V. Image fusion techniques: A survey. Arch. Comput. Methods Eng. 2021, 8, 4425–4447. [Google Scholar]
- Parida, P.; Panda, M.K.; Rout, D.K.; Panda, S.K. Infrared and visible image fusion using quantum computing induced edge preserving filter. Image Vis. Comput. 2025, 153, 105344. [Google Scholar]
- Singh, S.; Singh, H.; Bueno, G.; Deniz, O.; Singh, S.; Monga, H.; Hrisheekesha, P.N.; Pedraza, A. A review of image fusion: Methods, applications and performance metrics. Digit. Signal Process. 2023, 137, 104020. [Google Scholar]
- Zhang, Y.; Liao, X. Asymmetric Training and Symmetric Fusion for Image Denoising in Edge Computing. Symmetry 2025, 17, 424. [Google Scholar] [CrossRef]
- Liu, J.; Wu, G.; Liu, Z.; Wang, D.; Jiang, Z.; Ma, L. Infrared and Visible Image Fusion: From Data Compatibility to Task Adaption. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 47, 2349–2369. [Google Scholar]
- Zhao, W.; Xie, S.; Zhao, F.; He, Y.; Lu, H. Metafusion: Infrared and visible image fusion via meta-feature embedding from object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 13955–13965. [Google Scholar]
- Hou, H.; Wang, Y.; Qin, Q.; Tan, Y.; Liu, T. Multi-Scale feature fusion based on difference enhancement for remote sensing image change detection. Symmetry 2025, 17, 590. [Google Scholar] [CrossRef]
- Yi, X.; Gu, S.; Wu, X.; Jing, D. AFEDet: A Symmetry-Aware Deep Learning Model for Multi-Scale Object Detection in Aerial Images. Symmetry 2015, 17, 488. [Google Scholar]
- Zhang, X.; Demiris, Y. Visible and infrared image fusion using deep learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10535–10554. [Google Scholar]
- Zhang, H.; Xu, H.; Tian, X.; Jiang, J.; Ma, J. Image fusion meets deep learning: A survey and perspective. Inf. Fusion. 2021, 76, 323–336. [Google Scholar]
- Tang, L.; Yuan, J.; Ma, J. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network. Inf. Fusion. 2022, 82, 28–42. [Google Scholar]
- Liu, J.; Fan, X.; Huang, Z.; Wu, G.; Liu, R. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5802–5811. [Google Scholar]
- Guo, M.H.; Lu, C.Z.; Liu, Z.N.; Cheng, M.M.; Hu, S.M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar]
- Hassanin, M.; Anwar, S.; Radwan, I.; Khan, F.S.; Mian, A. Visual attention methods in deep learning: An in-depth survey. Inf. Fusion. 2024, 108, 102417. [Google Scholar]
- Liu, Y.; Guo, Y.; Yin, J.; Song, X.; Liu, W.; Nie, L. Answer questions with right image regions: A visual attention regularization approach. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2022, 18, 1–18. [Google Scholar]
- Shen, F.; Liu, H.; Xu, C.; Ouyang, L.; Zhang, J.; Chen, Y.; He, Y. VGGNet and Attention Mechanism-Based Image Quality Assessment Algorithm in Symmetry Edge Intelligence Systems. Symmetry 2025, 17, 331. [Google Scholar] [CrossRef]
- Lu, S.; Liu, M.; Yin, L.; Yin, Z.; Liu, X.; Zheng, W. The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Comput. Sci. 2023, 9, e1400. [Google Scholar]
- Guo, W.; Zhang, Y.; Yang, J.; Yuan, X. Re-attention for visual question answering. IEEE Trans. Image Process. 2021, 30, 6730–6743. [Google Scholar] [PubMed]
- Li, J.; Huo, H.; Li, C.; Wang, R.; Feng, Q. AttentionFGAN: Infrared and visible image fusion using attention-based generative adversarial networks. IEEE Trans. Multimed. 2020, 23, 1383–1396. [Google Scholar]
- Liu, Y.; Dong, L.; Chen, Y.; Xu, W. An efficient method for infrared and visual images fusion based on visual attention technique. Remote Sens. 2020, 12, 781. [Google Scholar]
- Jin, X.; Jiang, Q.; Yao, S.; Zhou, D.; Nie, R.; Hai, J.; He, K. A survey of infrared and visual image fusion methods. Infr. Phys. Technol. 2017, 85, 478–501. [Google Scholar]
- Fang, C.; Tian, H.; Zhang, D.; Zhang, Q.; Han, J.; Han, J. Densely nested top-down flows for salient object detection. Sci. China Inf. Sci. 2022, 65, 182103. [Google Scholar]
- Lin, D.; Shen, D.; Shen, S.; Ji, Y.; Lischinski, D.; Cohen-Or, D.; Huang, H. Zigzagnet: Fusing top-down and bottom-up context for object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Liu, S.; Yan, A.; Huang, S. Seismic data denoising based on DC-PCNN image fusion in NSCT domain. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7502205. [Google Scholar]
- Singh, S.; Singh, H.; Gehlot, A.; Jaskirat, K. IR and visible image fusion using DWT and bilateral filter. Microsyst. Technol. 2023, 29, 457–467. [Google Scholar]
- Zhang, H.; Ma, X.; Tian, Y. An image fusion method based on curvelet transform and guided filter enhancement. Math. Probl. Eng. 2020, 2020, 9821715. [Google Scholar]
- Li, G.; Lin, Y.; Qu, X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Inf. Fusion. 2021, 71, 109–129. [Google Scholar]
- Fu, Z.; Wang, X.; Xu, J.; Ning, Z.; Zhao, Y. Infrared and visible images fusion based on RPCA and NSCT. Infr. Phys. Technol. 2016, 77, 114–123. [Google Scholar]
- Zhang, S.; Li, X.; Zhang, X.; Zhang, S. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition. Infr. Phys. Technol. 2021, 114, 103626. [Google Scholar]
- Yang, Y.; Liu, J.; Huang, S.; Wan, W. Infrared and visible image fusion via texture conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4771–4783. [Google Scholar]
- Rao, D.; Xu, T.; Wu, X.J. TGFuse: An infrared and visible image fusion approach based on transformer and generative adversarial network. IEEE Trans. Image Process. 2023; Early Access. [Google Scholar]
- Su, W.; Huang, Y.; Li, Q.; Zuo, F.; Liu, L. Infrared and visible image fusion based on adversarial feature extraction and stable image reconstruction. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar]
- Li, S.; Araujo, I.B.; Ren, W.; Wang, Z.; Tokuda, E.K.; Junior, R.H.; Cesar-Junior, R.; Zhang, J.; Guo, X. Single image deraining: A comprehensive benchmark analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3838–3847. [Google Scholar]
- Pei, Y.; Huang, Y.; Zou, Q.; Lu, Y.; Wang, S. Does haze removal help cnn-based image classification? In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 682–697. [Google Scholar]
- Tzinis, E.; Wang, Z.; Smaragdis, P. Sudo rm-rf: Efficient networks for universal audio source separation. In Proceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), Espoo, Finland, 21–24 September 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6077–6086. [Google Scholar]
- Guo, S.; Wang, Y.; Tan, Y.; Liu, T.; Qin, Q. Efficient Coastal Mangrove Species Recognition Using Multi-Scale Features Enhanced by Multi-Head Attention. Symmetry 2025, 17, 461. [Google Scholar]
- Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 2015, 1, 373–391. [Google Scholar]
- Wang, J.; Xi, X.; Li, D.; Li, F. FusionGRAM: An infrared and visible image fusion framework based on gradient residual and attention mechanism. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar]
- Pang, B.; Li, Y.; Li, J.; Li, M.; Cao, H.; Lu, C. Tdaf: Top-down attention framework for vision tasks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 2384–2392. [Google Scholar]
- Fang, Y.; Lin, W.; Lau, C.T.; Lee, B.S. A visual attention model combining top-down and bottom-up mechanisms for salient object detection. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; IEEE: New York, NY, USA, 2011; pp. 1293–1296. [Google Scholar]
- Wang, W.; Shen, J.; Cheng, M.M. An iterative and cooperative top-down and bottom-up inference network for salient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5968–5977. [Google Scholar]
- Mathôt, S.; Theeuwes, J. Visual attention and stability. Philos. Trans. R. Soc. Biol. Sci. 2021, 366, 516–527. [Google Scholar]
- Chrysos, G.G.; Wu, Y.; Pascanu, R.; Torr, P.; Cevher, V. Hadamard product in deep learning: Introduction, Advances and Challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 6531–6549. [Google Scholar] [PubMed]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Subakan, C.; Ravanelli, M.; Cornell, S.; Bronzi, M.; Zhong, J. Attention is all you need in speech separation. In Proceedings of the IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021. [Google Scholar]
- Liu, Y.; Dong, L.; Xu, W. Infrared and visible image fusion via salient object extraction and low-light region enhancement. Infr. Phys. Technol. 2022, 124, 104223. [Google Scholar]
- Tang, L.; Yuan, J.; Zhang, H.; Jiang, X.; Ma, J. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion. 2022, 83, 79–92. [Google Scholar]
- Yang, G.; Li, J.; Lei, H.; Gao, X. A multi-scale information integration framework for infrared and visible image fusion. Neurocomputing 2024, 600, 128116. [Google Scholar]
- Song, W.; Li, Q.; Gao, M.; Chehri, A.; Jeon, G. SFINet: A semantic feature interactive learning network for full-time infrared and visible image fusion. Expert Syst. Appl. 2025, 261, 125472. [Google Scholar]
- Guo, L.; Luo, X.; Liu, Y.; Zhang, Z.; Wu, X. SAM-guided multi-level collaborative Transformer for infrared and visible image fusion. Pattern Recognit. 2025, 162, 111391. [Google Scholar]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar]
- Li, H.; Xu, T.; Wu, X.; Lu, J.; Kittler, J. Lrrnet: A novel representation learning guided fusion network for infrared and visible images. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11040–11052. [Google Scholar] [PubMed]
- Wang, Z.; Wu, Y.; Wang, J.; Xu, J.; Shao, W. Res2Fusion: Infrared and visible image fusion based on dense Res2net and double nonlocal attention models. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar]
- Wang, Z.; Yang, F.; Sun, J.; Xu, J.; Yang, F.; Yan, X. AITFuse: Infrared and visible image fusion via adaptive interactive transformer learning. Knowl.-Based Syst. 2024, 299, 111949. [Google Scholar]
- Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar]
- Hossny, M.; Nahavandi, S.; Creighton, D. Comments on ‘Information measure for performance of image fusion’. Electron. Lett. 2008, 44, 1028–1066. [Google Scholar]
- Chen, J.; Yang, L.; Liu, W.; Tian, X.; Ma, J. LENFusion: A Joint Low-Light Enhancement and Fusion Network for Nighttime Infrared and Visible Image Fusion. IEEE Trans. Instrum. Meas. 2024, 73, 5018715. [Google Scholar]
- Katkade, K.S.N.; Bagal, V.C.; Manza, R.R.; Yannawar, P.L. Advances in real-time object detection and information retrieval: A review. Artif. Intell. Appl. 2023, 1, 123–128. [Google Scholar]
Method | EN↑ | SF↑ | SD↑ | VIF↑ |
---|---|---|---|---|
LRRNET | 5.399 ± 0.663 | 4.674 ± 0.961 | 22.626 ± 8.047 | 0.513 ± 0.120 |
MDA | 5.329 ± 0.471 | 4.523 ± 0.735 | 17.831 ± 4.531 | 0.614 ± 0.061 |
RES2Fusion | 4.896 ± 1.056 | 5.028 ± 0.972 | 32.774 ± 9.056 | 0.827 ± 0.097 |
SeAFusion | 5.965 ± 0.544 | 5.637 ± 0.860 | 33.169 ± 8.225 | 1.001 ± 0.077 |
SFINet | 6.074 ± 0.513 | 5.272 ± 0.824 | 28.012 ± 7.268 | 0.785 ± 0.111 |
SpTFuse | 5.981 ± 0.547 | 5.256 ± 0.806 | 32.126 ± 8.299 | 0.988 ± 0.073 |
U2Fusion | 4.244 ± 0.706 | 4.096 ± 0.919 | 18.176 ± 5.180 | 0.477 ± 0.063 |
VAFNet | 6.452 ± 0.359 | 6.851 ± 0.874 | 36.451 ± 4.421 | 1.060 ± 0.210 |
Method | EN↑ | SF↑ | SD↑ | VIF↑ |
---|---|---|---|---|
LRRNet | 7.177 ± 0.399 | 8.095 ± 1.487 | 44.302 ± 12.874 | 0.970 ± 0.208 |
MDA | 6.589 ± 0.306 | 6.320 ± 0.846 | 28.665 ± 7.255 | 0.812 ± 0.153 |
RES2Fusion | 6.188 ± 0.537 | 5.200 ± 1.461 | 23.206 ± 9.078 | 0.741 ± 0.108 |
SeAFusion | 7.067 ± 0.234 | 8.946 ± 1.642 | 40.161 ± 10.384 | 1.061 ± 0.303 |
SFINet | 6.940 ± 0.325 | 8.148 ± 1.220 | 38.649 ± 9.845 | 0.857 ± 0.182 |
SpTFuse | 6.810 ± 0.388 | 5.756 ± 1.409 | 32.796 ± 11.088 | 0.915 ± 0.101 |
U2Fusion | 6.465 ± 0.550 | 7.798 ± 1.666 | 25.813 ± 9.795 | 0.765 ± 0.147 |
VAFNet | 7.416 ± 0.185 | 9.124 ± 1.850 | 48.841 ± 3.766 | 1.042 ± 0.302 |
Method | EN↑ | SF↑ | SD↑ | VIF↑ |
---|---|---|---|---|
LRRNet | 7.069 ± 0.542 | 9.076 ± 1.533 | 45.272 ± 9.645 | 0.817 ± 0.131 |
MDA | 6.791 ± 0.498 | 7.901 ± 1.315 | 33.212 ± 8.180 | 0.727 ± 0.105 |
RES2Fusion | 7.113 ± 0.507 | 8.835 ± 1.738 | 44.663 ± 11.189 | 0.116 ± 0.192 |
SeAFusion | 7.294 ± 0.405 | 9.520 ± 1.450 | 48.948 ± 9.929 | 0.950 ± 0.129 |
SFINet | 6.955 ± 0.453 | 8.121 ± 1.584 | 39.058 ± 9.006 | 0.362 ± 0.387 |
SpTFuse | 7.335 ± 0.473 | 8.451 ± 1.355 | 49.471 ± 11.994 | 0.876 ± 0.099 |
U2Fusion | 6.676 ± 0.664 | 9.200 ± 1.854 | 33.300 ± 9.809 | 0.092 ± 0.112 |
VAFNet | 7.337 ± 0.275 | 9.232 ± 1.235 | 49.773 ± 5.285 | 0.799 ± 0.195 |
Method | P | R | AP@50 | AP@70 | AP@90 | mAP@[0.5:0.95] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Person | Car | All | Person | Car | All | Person | Car | All | Person | Car | All | |||
Infrared | 0.9203 | 0.7337 | 0.9493 | 0.6835 | 0.8164 | 0.9061 | 0.6294 | 0.7677 | 0.2375 | 0.1938 | 0.2157 | 0.7208 | 0.4959 | 0.6084 |
Visible | 0.7806 | 0.6606 | 0.4375 | 0.9255 | 0.6815 | 0.3197 | 0.9199 | 0.6198 | 0.0032 | 0.3993 | 0.2012 | 0.2412 | 0.7514 | 0.4963 |
MDA | 0.9485 | 0.7856 | 0.8165 | 0.9557 | 0.8861 | 0.7640 | 0.9538 | 0.8589 | 0.0999 | 0.4473 | 0.2736 | 0.5714 | 0.7938 | 0.6826 |
SFINet | 0.9488 | 0.8756 | 0.9366 | 0.9830 | 0.9598 | 0.8908 | 0.9830 | 0.9369 | 0.1397 | 0.5667 | 0.3532 | 0.6771 | 0.8278 | 0.7524 |
SpTFuse | 0.9156 | 0.8873 | 0.9281 | 0.9752 | 0.9516 | 0.8891 | 0.9665 | 0.9278 | 0.1757 | 0.4843 | 0.3300 | 0.6868 | 0.8174 | 0.7521 |
U2Fusion | 0.9467 | 0.8324 | 0.8699 | 0.9604 | 0.9152 | 0.8499 | 0.9513 | 0.9006 | 0.1160 | 0.6232 | 0.3696 | 0.6348 | 0.8206 | 0.7277 |
LRRNet | 0.9612 | 0.7414 | 0.7350 | 0.9440 | 0.8395 | 0.6598 | 0.9440 | 0.8019 | 0.0266 | 0.6059 | 0.3162 | 0.4748 | 0.7944 | 0.6346 |
RES2Fusion | 0.9235 | 0.7973 | 0.9039 | 0.8864 | 0.8951 | 0.8269 | 0.8719 | 0.8494 | 0.0663 | 0.3922 | 0.2292 | 0.6170 | 0.7210 | 0.6690 |
SeAFusion | 0.9108 | 0.9038 | 0.9372 | 0.9742 | 0.9557 | 0.8707 | 0.9604 | 0.9156 | 0.1684 | 0.5440 | 0.3562 | 0.6726 | 0.8171 | 0.7448 |
VAFNet | 0.9639 | 0.9476 | 0.9912 | 0.9911 | 0.9911 | 0.9896 | 0.9912 | 0.9904 | 0.3041 | 0.7751 | 0.5396 | 0.8014 | 0.8838 | 0.8426 |
Method | MSRS | TNO | Collection |
---|---|---|---|
MDA | 0.2527 ± 0.0065 | 0.9739 ± 0.0168 | 1.1855 ± 0.0113 |
SFINet | 1.6688 ± 0.3591 | 1.3579 ± 0.4125 | 8.5686 ± 1.7780 |
SpTFuse | 0.6259 ± 0.0137 | 1.9306 ± 0.0390 | 2.4026 ± 0.0434 |
U2Fusion | 0.6514 ± 0.0193 | 2.0656 ± 0.0349 | 2.4314 ± 0.0444 |
LRRNet | 0.0967 ± 0.3240 | 0.4529 ± 0.7805 | 0.3330 ± 0.5065 |
RES2Fusion | 1.0121 ± 0.0154 | 8.4371 ± 0.0797 | 13.2681 ± 0.1103 |
SeAFusion | 0.0488 ± 0.3246 | 0.2966 ± 0.7789 | 0.1344 ± 0.5090 |
VAFNet | 0.0054 ± 0.0007 | 0.0050 ± 0.0003 | 0.0053 ± 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Y.; Jing, Z. Visual Attention Fusion Network (VAFNet): Bridging Bottom-Up and Top-Down Features in Infrared and Visible Image Fusion. Symmetry 2025, 17, 1104. https://doi.org/10.3390/sym17071104
Liu Y, Wang Y, Jing Z. Visual Attention Fusion Network (VAFNet): Bridging Bottom-Up and Top-Down Features in Infrared and Visible Image Fusion. Symmetry. 2025; 17(7):1104. https://doi.org/10.3390/sym17071104
Chicago/Turabian StyleLiu, Yaochen, Yunke Wang, and Zixuan Jing. 2025. "Visual Attention Fusion Network (VAFNet): Bridging Bottom-Up and Top-Down Features in Infrared and Visible Image Fusion" Symmetry 17, no. 7: 1104. https://doi.org/10.3390/sym17071104
APA StyleLiu, Y., Wang, Y., & Jing, Z. (2025). Visual Attention Fusion Network (VAFNet): Bridging Bottom-Up and Top-Down Features in Infrared and Visible Image Fusion. Symmetry, 17(7), 1104. https://doi.org/10.3390/sym17071104