Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry
Abstract
1. Introduction
2. Methodology
2.1. Research Approach
2.2. Method of Search
- (“Computerized Testing Logic” OR “Adaptive Testing” OR “AI Mental Health Diagnosis” OR “Mental Health Chatbots” OR “Digital Mental Health Tools” OR “CBT Platforms”);
- AND (“AI” OR “ML”);
- AND (“Mental Health” OR “Mental Health Screening” OR “Digital Mental Health” OR “Computerized Screening” OR “Adaptive Screening” OR “Chatbot and Mental Health”);
- AND (“systematic review”).
2.3. Data Analysis and Thematic Synthesis
2.4. Exclusion and Inclusion Criteria
2.4.1. Inclusion Criteria
- Peer-reviewed articles in journals, conference papers, or systematic reviews;
- Research on mental health screening technology, mental health chatbots and tools, CTL, adaptive testing, AI, ML, or CBT;
- Research on digital, computerized, or AI-based mental health therapies;
- Articles released from 2020 to 2025;
- English-language journals with full-text availability.
2.4.2. Exclusion Criteria
- Non-English articles;
- Editorials, opinion articles, commentaries, or opinion columns that lack empirical data;
- Research based solely on hand/manual screening procedures;
- Research not associated with the mental health evaluation or AI/digital-assisted techniques;
- Articles not available in full text;
- Market mental health apps that have not been peer-reviewed.
2.5. Selection Process
2.6. Quality Control and Validation
2.7. Methodological Quality Assessment of Included Studies
3. Results of Systematic Review
3.1. Techniques Utilized
3.2. Cultural Adaptation
3.3. Feature and System Design
3.4. Technical Methodology and Evaluation
3.5. Common Limitations
3.6. Synthesis Table: Chatbot Comparison Across Categories
3.7. Keyword Co-Occurrence Network and Thematic Clusters
3.8. Density Mapping of Author Co-Authorship
4. Thematic Analysis and Discussion
4.1. Symmetry in Therapeutic and Ethical Frameworks
4.2. Ethical Variations Across Individual Chatbot Systems
4.3. Practical Implications of the Symmetric Therapeutic Framework
4.4. Clinical and Technical Effectiveness
4.5. Cultural Adaptation and Local Relevance
Expansion on User Cultural Adaptation Participation
4.6. Expanding the Geographical Scope: Insights from the Global South
4.7. Importance of Active User Participation in AI Chatbot Development
4.8. Accessibility and Inclusivity
4.9. Ethical Implications
4.10. Data Security and Transparency in LMICs
5. Future Research Directions
5.1. Contextual and Culturally Grounded Design
5.2. Integration Within Public Health Ecosystems
5.3. Standardization, Transparency, and Long-Term
5.4. Ethical Leadership and Regulatory Protections
5.5. Investment in Digital Access and Infrastructure
5.6. Emotionally Responsive and Safe AI
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alhuwaydi, A.M. Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions—A Narrative Review for a Comprehensive Insight. Risk Manag. Healthc. Policy 2024, 17, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.E.; Torous, J.; Choudhury, M.D.; Depp, C.A.; Graham, S.A.; Kim, H.C.; Paulus, M.P.; Krystal, J.H.; Jeste, D.V. Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 856–864. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Odetayo, A.; David-Olawade, A.C.; Asaolu, F.; Eberhardt, J. Enhancing mental health with Artificial Intelligence: Current trends and future prospects. J. Med. Surg. Public Health 2024, 3, 100099. [Google Scholar] [CrossRef]
- Manaf, M.R.A.; Shaharuddin, M.A.A.; Nawi, A.M.; Tauhid, N.M.; Othman, H.; Rahman, M.R.A.; Yusoff, H.M.; Safian, N.; Ng, P.Y.; Manaf, Z.A.; et al. Perceived Symptoms of Depression, Anxiety and Stress amongst Staff in a Malaysian Public University: A Workers Survey. Int. J. Environ. Res. Public Health 2021, 18, 11874. [Google Scholar] [CrossRef]
- de la Torre, J.A.; Vilagut, G.; Ronaldson, A.; Serrano-Blanco, A.; Martín, V.; Peters, M.; Valderas, J.M.; Dregan, A.; Alonso, J. Prevalence and variability of current depressive disorder in 27 European countries: A population-based study. Lancet Public Health 2021, 6, e729–e738. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Altice, F.L.; Khati, A.; Azwa, I.; Gautam, K.; Gupta, S.; Sullivan, P.S.; Ni, Z.; Kamarulzaman, A.; Phiphatkunarnon, P.; et al. Clinic-Integrated Smartphone App (JomPrEP) to Improve Uptake of HIV Testing and Pre-exposure Prophylaxis Among Men Who Have Sex with Men in Malaysia: Mixed Methods Evaluation of Usability and Acceptability. JMIR mHealth and uHealth 2023, 11, e44468. [Google Scholar] [CrossRef] [PubMed]
- Ezawa, I.D.; Robinson, N.; Hollon, S.D. Prevalence Increases as Treatments Improve: An Evolutionary Perspective on the Treatment–Prevalence Paradox in Depression. Annu. Rev. Clin. Psychol. 2024, 20, 201–228. [Google Scholar] [CrossRef]
- Ormel, J.; Emmelkamp, P.M. More Treatment, but Not Less Anxiety and Mood Disorders: Why? Seven Hypotheses and Their Evaluation. Psychother. Psychosom. 2023, 92, 73–80. [Google Scholar] [CrossRef]
- Sapkota, R.P.; Valli, E.; Dear, B.F.; Titov, N.; Hadjistavropoulos, H.D. Satisfaction, engagement, and outcomes in internet-delivered cognitive behaviour therapy adapted for people of diverse ethnocultural groups: An observational trial with benchmarking. Front. Psychiatry 2024, 15, 1270543. [Google Scholar] [CrossRef]
- Langarizadeh, M.; Tabatabaei, M.S.; Tavakol, K.; Naghipour, M.; Rostami, A.; Moghbeli, F. Telemental Health Care, an Effective Alternative to Conventional Mental Care: A Systematic Review. Acta Inform. Medica Aim J. Soc. Med. Inform. Bosnia Herzeg. 2017, 25, 240–246. [Google Scholar] [CrossRef]
- Arifin, S.R.M.; Daud, S.A.; Ruslan, N.L.S.; Abdullah, K.H.A.; Abas, N.A.H.; Husain, R.; Aziz, K.H.A.; Musa, R.; Mohideen, F.B.S.; Perveen, A.; et al. Exploring the Views of Healthcare Practitioners on Postnatal Mental Illness Screening Among Malaysian Women. Malays. J. Med. Health Sci. 2022, 18, 66–72. [Google Scholar]
- Chan, C.M.H.; Ng, S.L.; In, S.; Wee, L.H.; Siau, C.S. Predictors of Psychological Distress and Mental Health Resource Utilization among Employees in Malaysia. Int. J. Environ. Res. Public Health 2021, 18, 314. [Google Scholar] [CrossRef]
- Mok, S.L.; Chuah, J.Y.; Lee, K.J.; Lim, Y.D.; Appalasamy, J.R.; Saw, P.S.; Selvaraj, A. Community Pharmacists’ Views on Their Roles in Mental Health Screening and Management in Malaysia. Community Ment. Health J. 2025, 61, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.L.; Malakhova, Y. Psychological capital and social capital: Resilience building in the post-pandemic hotel industry in Malaysia. J. Hum. Resour. Hosp. Tour. 2025, 24, 111–138. [Google Scholar] [CrossRef]
- Shaw, S.A.; Lee, C.Y.; Ahmadi, M.; Muluk, H.K.S.; Jibril, Z.M.; Ahmadi, L.; Randall, L.; Yang, C.; Gilbert, L. A randomized controlled trial testing the feasibility, acceptability, and preliminary effects of a mental health Screening, Brief Intervention, and Referral to Treatment among refugees in Malaysia. Int. J. Soc. Psychiatry 2023, 69, 1898–1908. [Google Scholar] [CrossRef]
- Zamri, E.N.; Sha, L.; Haizam, T.N.A.B.T.M.N.; Isa, S.N.I. A scoping review of the factors associated with mental health among Malaysian adolescents. Malays. J. Mov. Health Exerc. 2024, 13, 71–82. [Google Scholar] [CrossRef]
- Roslan, N.R.; Fauzi, M.F.M.; Teng, L.W.; Azurah, A.G.N. Maternal Mental Health following Ultrasonographic Detection of Fetal Structural Anomaly in the Midst of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 12900. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Minerva, F.; Giubilini, A. Is AI the Future of Mental Healthcare? Topoi 2023, 42, 809–817. [Google Scholar] [CrossRef]
- Boucher, E.M.; Harake, N.R.; Ward, H.E.; Stoeckl, S.E.; Vargas, J.; Minkel, J.; Parks, A.C.; Zilca, R. Artificially intelligent chatbots in digital mental health interventions: A review. Expert Rev. Med. Devices 2021, 18, 37–49. [Google Scholar] [CrossRef]
- Hayati, M.F.M.; Ali, M.A.M.; Rosli, A.N.M. Depression Detection on Malay Dialects Using GPT-3. In Proceedings of the 7th IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 7–9 December 2022; pp. 360–364. [Google Scholar] [CrossRef]
- Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M.; Crossley, N.; Jones, N.; Cannon, M.; Correll, C.U.; Byrne, L.; Carr, S.; et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Pavlopoulos, A.; Rachiotis, T.; Maglogiannis, I. An Overview of Tools and Technologies for Anxiety and Depression Management Using AI. Appl. Sci. 2024, 14, 9068. [Google Scholar] [CrossRef]
- Dar, M.A.; Maqbool, M.; Ara, I.; Zehravi, M. The Intersection of Technology and Mental Health: Enhancing Access and Care. Int. J. Adolesc. Med. Health 2023, 35, 423–428. [Google Scholar] [CrossRef]
- Melcher, J.; Hays, R.; Torous, J. Digital phenotyping for mental health of college students: A clinical review. BMJ Ment. Health 2020, 23, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, R.; Khan, N.; Subbarao, A.; Taralunga, D. Technological Innovations in Enhancing Digital Mental Health Engagement for Low-Income Groups. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 209–226. [Google Scholar] [CrossRef]
- Ismael, M.I.; Hashim, N.N.W.N.; Shah, N.S.M.; Munir, N.S.M. Chatbot System for Mental Health in Bahasa Malaysia. J. Integr. Adv. Eng. (JIAE) 2022, 2, 135–146. [Google Scholar] [CrossRef]
- Ng, S.H.; Soon, L.K.; Su, T.T. Emotion-Aware Chatbot with Cultural Adaptation for Mitigating Work-Related Stress. In Proceedigns of the Asian CHI ’23: Proceedings of the Asian HCI Symposium 2023, Virtual, 28 April 2023; pp. 41–50. [Google Scholar] [CrossRef]
- Adler, D.A.; Stamatis, C.A.; Meyerhoff, J.; Mohr, D.C.; Wang, F.; Aranovich, G.J.; Sen, S.; Choudhury, T. Measuring algorithmic bias to analyze the reliability of AI tools that predict depression risk using smartphone sensed-behavioral data. NPJ Ment. Health Res. 2024, 3, 17. [Google Scholar] [CrossRef]
- Yan, W.J.; Ruan, Q.N.; Jiang, K. Challenges for Artificial Intelligence in Recognizing Mental Disorders. Diagnostics 2022, 13, 2. [Google Scholar] [CrossRef]
- Alnaher, S. Digital Mental Health Interventions: A Comprehensive Systematic Review. J. Sociol. Psychol. Relig. Stud. 2023, 5, 108–122. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Bouhouita-Guermech, S.; Gogognon, P.; Bélisle-Pipon, J.C. Specific Challenges Posed by Artificial Intelligence in Research Ethics. Front. Artif. Intell. 2023, 6, 1149082. [Google Scholar] [CrossRef] [PubMed]
- Bassett, C. The Computational Therapeutic: Exploring Weizenbaum’s ELIZA as a History of the Present. AI Soc. 2019, 34, 803–812. [Google Scholar] [CrossRef]
- Emmelkamp, P.M. Technological Innovations in Clinical Assessment and Psychotherapy. Psychother. Psychosom. 2005, 74, 336–343. [Google Scholar] [CrossRef]
- Farzan, M.; Ebrahimi, H.; Pourali, M.; Sabeti, F. Artificial Intelligence-Powered Cognitive Behavioral Therapy Chatbots, a Systematic Review. Iran. J. Psychiatry 2025, 20, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Azar, G. Factors influencing patient engagement in mental health chatbots: A thematic analysis of findings from a systematic review of reviews. Digit. Health 2024, 10, 20552076241247983. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Lee, Y.C.; Kraut, R.E.; Mohr, D.C. Systematic Review and Meta-Analysis of AI-Based Conversational Agents for Promoting Mental Health and Well-being. NPJ Digit. Med. 2023, 6, 236. [Google Scholar] [CrossRef]
- Huang, N.; Goswami, P.; Sundstedt, V.; Hu, Y.; Cheddad, A. Personalized smart immersive XR environments: A systematic literature review. Vis. Comput. 2025, 1–34. [Google Scholar] [CrossRef]
- Kurniawan, M.H.; Handiyani, H.; Nuraini, T.; Hariyati, R.T.S.; Sutrisno, S. A systematic review of artificial intelligence-powered (AI-powered) chatbot intervention for managing chronic illness. Ann. Med. 2024, 56, 2302980. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.A.; Rababeh, A.; Alajlani, M.; Bewick, B.M.; Househ, M. Effectiveness and safety of using chatbots to improve mental health: Systematic review and meta-analysis. J. Med. Internet Res. 2020, 22, e16021. [Google Scholar] [CrossRef]
- Limpanopparat, S.; Gibson, E.; Harris, D.A. User engagement, attitudes, and the effectiveness of chatbots as a mental health intervention: A systematic review. Comput. Hum. Behav. Artif. Humans 2024, 2, 100081. [Google Scholar] [CrossRef]
- Alsayed, S.; Assayed, S.K.; Alkhatib, M.; Shaalan, K. Impact of Artificial Intelligence Chatbots on Student Well-being and Mental Health: A Systematic Review. People Behav. Anal. 2024, 2, 1–13. [Google Scholar] [CrossRef]
- Vaidyam, A.N.; Linggonegoro, D.; Torous, J. Changes to the Psychiatric Chatbot Landscape: A Systematic Review of Conversational Agents in Serious Mental Illness: Changements du paysage psychiatrique des chatbots: Une revue systématique des agents conversationnels dans la maladie mentale sérieuse. Can. J. Psychiatry 2021, 66, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Peters, J.P.; Hooft, L.; Grolman, W.; Stegeman, I. Reporting Quality of Systematic Reviews and Meta-Analyses of Otorhinolaryngologic Articles Based on the PRISMA Statement. PLoS ONE 2015, 10, e0136540. [Google Scholar] [CrossRef]
- Stovold, E.; Beecher, D.; Foxlee, R.; Noel-Storr, A. Study flow diagrams in Cochrane systematic review updates: An adapted PRISMA flow diagram. Syst. Rev. 2014, 3, 54. [Google Scholar] [CrossRef]
- Hossain, M.R.; Akhter, F.; Sultana, M.M. SMEs in COVID-19 Crisis and Combating Strategies: A Systematic Literature Review (SLR) and A Case from Emerging Economy. Oper. Res. Perspect. 2022, 9, 100222. [Google Scholar] [CrossRef]
- Panic, N.; Leoncini, E.; Belvis, G.D.; Ricciardi, W.; Boccia, S. Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoS ONE 2013, 8, e83138. [Google Scholar] [CrossRef]
- Wahab, N.A.; Zainudin, A.A.B.; Osman, A.; Ibrahim, N.; Mohammed, A.H. HelpMe: Early Detection of University Students’ Mental Health Issues Using a Chatbot-Integrated Dashboard. J. Comput. Res. Innov. 2025, 10, 204–217. [Google Scholar] [CrossRef]
- Florindi, F.; Fedele, P.; Dimitri, G.M. A Novel Solution for the Development of a Sentimental Analysis Chatbot Integrating ChatGPT. Pers. Ubiquitous Comput. 2024, 28, 947–960. [Google Scholar] [CrossRef]
- He, Y.; Yang, L.; Zhu, X.; Wu, B.; Zhang, S.; Qian, C.; Tian, T. Mental Health Chatbot for Young Adults with Depressive Symptoms During the COVID-19 Pandemic: Single-Blind, Three-Arm Randomized Controlled Trial. J. Med. Internet Res. 2022, 24, e40719. [Google Scholar] [CrossRef]
- Chowdhury, S.; Badsha, M.; Chowdury, A.F.; Islam, A.; Bary, M.A.N.; Abdullah, A.; Haque, S.Q.T. Machine Learning and Deep Learning Models for Predicting Mental Health Disorders and Performance Analysis through Chatbot Interactions. Eur. J. Comput. Sci. Inf. Technol. 2024, 12, 2024. [Google Scholar] [CrossRef]
- Omarov, B.; Zhumanov, Z.; Gumar, A.; Kuntunova, L.; Demirel, S.; Research, A. Artificial Intelligence Enabled Mobile Chatbot Psychologist using AIML and Cognitive Behavioral Therapy Academy of Logistics and Transport. IJACSA Int. J. Adv. Comput. Sci. Appl. 2023, 14, 2023. [Google Scholar] [CrossRef]
- Liu, J.; Gu, J.; Tong, M.; Yue, Y.; Qiu, Y.; Zeng, L.; Yu, Y.; Yang, F.; Zhao, S. Evaluating the Agreement Between ChatGPT-4 and Validated Questionnaires in Screening for Anxiety and Depression in College Students: A Cross-Sectional Study. BMC Psychiatry 2025, 25, 359. [Google Scholar] [CrossRef]
- Sabour, S.; Zhang, W.; Xiao, X.; Zhang, Y.; Zheng, Y.; Wen, J.; Zhao, J.; Huang, M. A chatbot for mental health support: Exploring the impact of Emohaa on reducing mental distress in China. Front. Digit. Health 2023, 5, 1133987. [Google Scholar] [CrossRef]
- Rani, K.; Vishnoi, H.; Mishra, M. A Mental Health Chatbot Delivering Cognitive Behavior Therapy and Remote Health Monitoring Using NLP And AI. In Proceedings of the 2023 International Conference on Disruptive Technologies, ICDT 2023, Greater Noida, India, 11–12 May 2023; pp. 313–317. [Google Scholar] [CrossRef]
- Siddals, S.; Torous, J.; Coxon, A. “It happened to be the perfect thing”: Experiences of generative AI chatbots for mental health. NPJ Ment. Health Res. 2024, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Maples, B.; Cerit, M.; Vishwanath, A.; Pea, R. Loneliness and suicide mitigation for students using GPT3-enabled chatbots. NPJ Ment. Health Res. 2024, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.; Kim, S.; Heo, J.I.; Lee, S.; Shin, Y.B.; Cho, C.H.; Jung, D. Therapeutic Potential of Social Chatbots in Alleviating Loneliness and Social Anxiety: Quasi-Experimental Mixed Methods Study. J. Med. Internet Res. 2025, 27, e65589. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, Y. GymBuddy and Elomia, AI-integrated applications, effects on the mental health of the students with psychological disorders. BMC Psychol. 2025, 13, 350. [Google Scholar] [CrossRef]
- van der Schyff, E.L.; Ridout, B.; Dip, G.; Amon, K.L.; Forsyth, R.; Cert, G.; Campbell, A.J. Providing Self-Led Mental Health Support Through an Artificial Intelligence–Powered Chat Bot (Leora) to Meet the Demand of Mental Health Care. J. Med. Internet Res. 2023, 25, e46448. [Google Scholar] [CrossRef]
- Langhammer, T.; Hilbert, K.; Wasenmueller, R.; Praxl, B.; Ertle, A.; Asbrand, J.; Lueken, U. Evaluation of a CBT-Based Program for Mental Health in the General Population during the COVID-19 Pandemic: A Stepped-Care Approach Using a Chatbot and Digitized Group Intervention. Depress. Anxiety 2024, 2024, 8950388. [Google Scholar] [CrossRef]
- Durden, E.; Pirner, M.C.; Rapoport, S.J.; Williams, A.; Robinson, A.; Forman-Hoffman, V.L. Changes in stress, burnout, and resilience associated with an 8-week intervention with relational agent “Woebot”. Internet Interv. 2023, 33, 100637. [Google Scholar] [CrossRef]
- Ulrich, S.; Gantenbein, A.R.; Zuber, V.; Wyl, A.V.; Kowatsch, T.; Künzli, H. Development and Evaluation of a Smartphone-Based Chatbot Coach to Facilitate a Balanced Lifestyle in Individuals with Headaches (BalanceUP App): Randomized Controlled Trial. J. Med. Internet Res. 2024, 26, e50132. [Google Scholar] [CrossRef]
- Prochaska, J.J.; Vogel, E.A.; Chieng, A.; Kendra, M.; Baiocchi, M.; Pajarito, S.; Robinson, A. A Therapeutic Relational Agent for Reducing Problematic Substance Use (Woebot): Development and Usability Study. J. Med. Internet Res. 2021, 23, e24850. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons-Craft, E.E.; Chan, W.W.; Smith, A.C.; Firebaugh, M.L.; Fowler, L.A.; Topooco, N.; DePietro, B.; Wilfley, D.E.; Taylor, C.B.; Jacobson, N.C. Effectiveness of a chatbot for eating disorders prevention: A randomized clinical trial. Int. J. Eat. Disord. 2022, 55, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Amchislavskiy, M. A Privacy-Focused, Adaptable Chatbot for Detecting and Preventing Depression. J. Knowl. Learn. Sci. Technol. 2024, 4, 52–60. [Google Scholar] [CrossRef]
- Potts, C.; Lindström, F.; Bond, R.; Mulvenna, M.; Booth, F.; Ennis, E.; Parding, K.; Kostenius, C.; Broderick, T.; Boyd, K.; et al. A Multilingual Digital Mental Health and Well-Being Chatbot (ChatPal): Pre-Post Multicenter Intervention Study. J. Med. Internet Res. 2023, 25, e43051. [Google Scholar] [CrossRef]
- Daley, K.; Hungerbuehler, I.; Cavanagh, K.; Claro, H.G.; Swinton, P.A.; Kapps, M. Preliminary Evaluation of the Engagement and Effectiveness of a Mental Health Chatbot. Front. Digit. Health 2020, 2, 576361. [Google Scholar] [CrossRef]
- Kleinau, E.; Lamba, T.; Jaskiewicz, W.; Gorentz, K.; Hungerbuehler, I.; Rahimi, D.; Kokota, D.; Maliwichi, L.; Jamu, E.; Zumazuma, A.; et al. Effectiveness of a chatbot in improving the mental wellbeing of health workers in Malawi during the COVID-19 pandemic: A randomized, controlled trial. PLoS ONE 2024, 19, e0303370. [Google Scholar] [CrossRef]
- de Graaff, A.M.; Habashneh, R.; Fanatseh, S.; Keyan, D.; Akhtar, A.; Abualhaija, A.; Faroun, M.; Aqel, I.S.; Dardas, L.; Servili, C.; et al. Evaluation of a Guided Chatbot Intervention for Young People in Jordan: Feasibility Randomized Controlled Trial. JMIR Ment. Health 2025, 12, e63515. [Google Scholar] [CrossRef]
- Meheli, S.; Sinha, C.; Kadaba, M. Understanding People with Chronic Pain Who Use a Cognitive Behavioral Therapy-Based Artificial Intelligence Mental Health App (Wysa): Mixed Methods Retrospective Observational Study. JMIR Hum. Factors 2022, 9, e35671. [Google Scholar] [CrossRef] [PubMed]
- Bolpagni, M.; Gabrielli, S. Development of a Comprehensive Evaluation Scale for LLM-Powered Counseling Chatbots (CES-LCC) Using the eDelphi Method. Informatics 2025, 12, 33. [Google Scholar] [CrossRef]
- Dweik, R.A.; Ajaj, R.; Kotb, R.; Halabi, D.E.; Sadier, N.S.; Sarsour, H.; Elhadi, Y.A.M. Opportunities and challenges in leveraging digital technology for mental health system strengthening: A systematic review to inform interventions in the United Arab Emirates. BMC Public Health 2024, 24, 2592. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.K.; Saker, S.; Chakraborty, P.A.; Chan, Y.M.; Michalak, E.E.; Irrarazaval, M.; Withers, M.; Ng, C.H.; Khan, A.; Greenshaw, A.; et al. Advancing equitable access to digital mental health in the Asia-Pacific region in the context of the COVID-19 pandemic and beyond: A modified Delphi consensus study. PLoS Glob. Public Health 2024, 4, e0002661. [Google Scholar] [CrossRef] [PubMed]
- Yaacob, N.M.; Basari, A.S.H.; Ghani, M.K.A.; Doheir, M.; Elzamly, A. Factors and Theoretical Framework That Influence User Acceptance for Electronic Personalized Health Records. Pers. Ubiquitous Comput. 2024, 28, 29–41. [Google Scholar] [CrossRef]
- Ibrahim, N.; Alziyadi, S.H.; Yaacob, N.M.; AlGhamdi, A.; Alanazi, M.; Alfaifi, J.; Umah, J.B.J.; Doheir, M.; Hamid, O.A.; Alazzam, M. Correlation between blood parameters in the early and later stages of pregnancy: A retrospective study. Transfus. Apher. Sci. 2025, 64, 104084. [Google Scholar] [CrossRef]
- Ali, R.R.; Yaacob, N.M.; Alqaryouti, M.H.; Sadeq, A.E.; Doheir, M.; Iqtait, M.; Rachmawanto, E.H.; Sari, C.A.; Yaacob, S.S. Learning Architecture for Brain Tumor Classification Based on Deep Convolutional Neural Network: Classic and ResNet50. Diagnostics 2025, 15, 624. [Google Scholar] [CrossRef]
- Zhou, S.; Mohd, M. Mental Health Safety and Depression Detection in Social Media Text Data: A Classification Approach Based on a Deep Learning Model. IEEE Access 2025, 13, 63284–63297. [Google Scholar] [CrossRef]
- Woon, L.S.C. Psychotropic Polypharmacy among Elderly Patients with Mental Illness in a Malaysian University Hospital: A 10-Year Review of Hospital Databases. Med. Health 2021, 16, 249–262. [Google Scholar] [CrossRef]
Study (Ref) + Duration | Scope/Focus | Ethics/Regulation | Cultural Adaptation | Technical Depth | Key Findings | Gap/Contribution |
---|---|---|---|---|---|---|
[36] (2017–2024) | Features, efficacy, engagement (Woebot, Wysa, Youper) | Not detailed | Not addressed | Moderate (empirical focus) | High satisfaction, symptom reduction | Needs long-term study and integration |
[40] (2013–2023) | AI chatbots for chronic diseases | Risk of bias assessed | Not addressed | Some (NLP, architecture) | Chatbots accepted, but documentation lacking; patient safety noted | Needs technical evidence and safety protocols |
[41] (Up to 2020) | Effectiveness and safety in mental health | Safety assessed | Not addressed | Moderate | Some benefit in depression, anxiety; good safety profile | Weak evidence, high bias risk |
[42] (2010–2023) | Engagement, attitude, effectiveness of chatbots | Not discussed | Partially (demographics only) | Moderate | Positive user attitudes; helpful in depression; demographic variations matter | Lacks standardization, feature variation |
[38] (< May 2023) | Meta-analysis of conversational agents in mental health | Legal/ethical uncertainty | Partially (elderly/clinical apps) | High (LLMs, mobile integration) | Generative AI more effective; no strong effect on overall well-being | Needs research on LLM safety, long-term effect |
[43] (2019–2023) | AI chatbots for student stress and mental health | Not detailed | Educational context only | Basic (no technical deep dive) | Chatbots helped reduce anxiety and depression in students | Suggests exploring deeper tech features and wider database use |
[44] (2018–2020) | Chatbots in serious mental illness (depression, schizophrenia) | Positive experience, low standardization | Underrepresented populations | Moderate (heterogeneous studies) | Diagnostic and therapeutic benefits noted | Recommends standard metrics and broader inclusion |
[37] (2000–2024) | Chatbot engagement in mental health: review of reviews | User-centered focus, ethics implied | User traits, not cultural regions | Design-focused (themes, interface) | Found themes: design, outcomes, perception, traits | Offers personalized design tips (e.g., color/music use) |
This SLR (2020–2025) | Symmetric therapeutic design, cultural balance, ethical structure | Explored (bias, safety) | Deep focus (Malaysia context) | Multidimensional (design + ethics) | Emphasizes structure, explainability, and cultural tailoring in chatbot design | Adds missing ethical–cultural–structural modeling (novel scope) |
Reference | Study Type | Sample Size | Measurement Tool | Comparison Group | Clear Outcome Reporting | Risk of Bias | Overall Quality |
---|---|---|---|---|---|---|---|
[50] | Design Science (Prototype + User Testing) | 30 | UEQ | No | Yes | Low | Moderate |
[27] | System Design + Technical Evaluation | ∼50 | PHQ-9, GAD-7 | No | Yes | Moderate | Moderate |
[51] | Proof of Concept (Technical Evaluation) | – | BERTScore, UNIEVAL | No | Yes | High | Low |
[52] | Randomized Controlled Trial (RCT) | 148 | PHQ-9, WAQ, UMUX-LITE | Yes | Yes | Low | High |
[53] | Technical Model Comparison | – | Accuracy, Precision, F1 | No | Yes | High | Low |
[54] | System Development + Technical Eval. | Small pilot | GAD-7, BPAQ-24 | No | Partial | High | Low–Moderate |
[55] | Cross-sectional Validation | 200 | PHQ-9, GAD-7 | Yes | Yes | Low | High |
[56] | Randomized Controlled Trial (RCT) | 247 (134 completed) | PHQ-9, GAD-7, PANAS | Yes | Yes | Low | High |
[57] | System Design | – | – | No | No | High | Low |
[58] | Qualitative Interviews | 19 | Semi-structured interviews | No | Yes | Moderate | Moderate |
[59] | Cross-sectional Mixed Methods | 1006 | De Jong Loneliness, ISEL | Yes | Yes | Low | High |
[60] | Quasi-experimental Mixed Methods | 176 | UCLA, LSAS, PHQ-9, GAD-7 | No | Yes | Low | High |
[61] | Quasi-Experimental | 65 | GHQ-28 | Yes | Yes | Low | High |
[62] | Viewpoint/ Proposal | – | Proposed PHQ-9, GAD-7 | No | Partial | Moderate | Low |
[63] | Stepped-Care (Pre-Post) | 1261 (189 completed) | PHQ-9, GAD-7, PHQ-15 | No | Yes | Medium | Moderate |
[64] | Single-Arm Trial | 256 | PSS, BRS, PHQ-8, GAD-7 | No | Yes | Medium | Moderate |
Reference | Study Type | Sample Size | Measurement Tool | Comparison Group | Clear Outcome Reporting | Risk of Bias | Overall Quality |
---|---|---|---|---|---|---|---|
[65] | Randomized Controlled Trial | 198 | PHQ-ADS, HMSE-G-SF | Yes | Yes | Medium–High | High |
[66] | Single-Group Pre–Post | 101 | PHQ-8, GAD-7, AUDIT-C | No | Yes | Medium | Moderate |
[67] | Randomized Controlled Trial | 700 | WCS, SATAQ-4R, EDE-Q | Yes | Yes | Low | High |
[68] | Technical Development | – | ML Accuracy Metrics | No | Yes | – | Medium |
[69] | Pre–Post Intervention | 348 (19 completed) | SWEMWBS, WHO-5 | No | Yes | Moderate | Moderate |
[6] | Feasibility Usability Study | 50 | SUS, HIVST uptake | No | Yes | Medium | Moderate |
[70] | Observational (real-world) | 36,070 | PHQ-9, GAD-7, DASS-21 (Stress) | None | Yes | High | Low–Moderate |
[71] | RCT (Feasibility) | 60 | RS-14, Custom 5-item resilience behavior scale | Enhanced Care As Usual (ECAU)—passive info group | Yes | Moderate | Moderate |
[72] | RCT (Feasibility) | 60 | HSCL-25, WHODAS 2.0, WHO-5, State Hope Scale | ECAU (Web-based psychoeducation) | Yes | Moderate | Moderate |
References | Chatbot/Techniques Used | NLP/ML Models | Cultural Adaptation | Platform/Tools |
---|---|---|---|---|
[50] | HelpMe: ETL, Emotional Dashboard | – | Malaysian students | PHP, JavaScript, MySQL, Power BI |
[27] | okBot: FFNN, PHQ-9/GAD-7 | TensorFlow, Bag-of-Words | Bahasa Malaysia | Kivy GUI, JSON |
[51] | F-One: Emotion detection, empathetic responses, sentiment-aware prompting | GPT-3.5, EmoRoBERTa, LangChain | English only | Flask, Dialogflow CX, GitHub Pages |
[52] | XiaoE: CBT, journaling, suicide detection | RASA, LDA | Mandarin-speaking students | WeChat, RCT framework |
[53] | Intent-based chatbot: LSTM, hybrid DL-ML | TF-IDF, Keras | Multilingual | Python (3.10), Keras, Scikit-learn |
[54] | Kazakh CBT Chatbot: AIML | FastText, MITIE | Kazakhstan | RASA, custom scripts |
[56] | Emohaa: CBT-Bot, Strategy-controlled NLP | – | Localized for Chinese users | WeChat, ESConv dataset |
[55] | Adaptive screening chatbot | GPT-PHQ/GAD | Chinese students | ChatGPT (text interface) |
[57] | Saarthi: CBT, Sentiment Analysis | Hybrid NLP (TF-IDF, NLTK) | India | Flutter, Android, Rasa |
[59] | Replika, Pi: Journaling | GPT-3/4 | Global users | Text, voice, VR/AR |
[58] | ChatGPT, Pi, Copilot | Generative AI (LLMs) | Global (EU, Asia, NA) | Text apps, MS Teams |
[60] | Luda Lee: Empathy support | Persona-driven NLP | Korea | Mobile chatbot (Nutty) |
[61] | Elomia, GymBuddy: CBT, journaling | NLP, ML emotion detection | China (students) | Mobile app |
[62] | Leora: CBT, ACT, ethics | NLP, PHQ-9/GAD-7 | Australia | AWS web/mobile |
[63] | Aury: Stepped-care CBT | NLP | German-speaking | Mobile/web |
[66] | Woebot-SUD: CBT, DBT, MI | NLP | Western-centric | Mobile (Woebot) |
[67] | Tessa: Structured CBT | Rule-based dialogues | U.S. students | SMS, Facebook Messenger |
[64] | Wysa: CBT, mindfulness | NLP | Western/global | Woebot-LIFE mobile/web |
[65] | BalanceUP: CBT, multimedia | NLP | German (CH, DE, AT) | iOS/Android multimedia |
References | Chatbot/Techniques Used | NLP/ML Models | Cultural Adaptation | Platform/Tools |
---|---|---|---|---|
[68] | Psych2Go: Emotion-aware CBT | Prosodic NLP, GPT-3.5 | Global | Audio chatbot (web) |
[69] | ChatPal: Psychoeducation | Rasa NLU NLP | English, Gaelic, Swedish | Mobile app, multimedia |
[6] | JomPrEP: Triage, referrals | Rule-based analytics, Malaysia (HIV MSM/TGW) | Clinic-app dashboard | – |
[70] | Vitalk: CBT-based guided chatbot | Rule-based dialogues | Brazilian general population | Mobile chatbot platform |
[71] | Vitalk: CBT + resilience activities | Not specified (likely rule-based) | Malawian health workers | Mobile app (unspecified platform) |
[72] | STARS: CBT, 10 interactive lessons | Rule-based (non-AI chatbot) | Jordan context adaptation | Web platform + optional e-helper calls |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algumaei, A.; Yaacob, N.M.; Doheir, M.; Al-Andoli, M.N.; Algumaie, M. Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry. Symmetry 2025, 17, 1082. https://doi.org/10.3390/sym17071082
Algumaei A, Yaacob NM, Doheir M, Al-Andoli MN, Algumaie M. Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry. Symmetry. 2025; 17(7):1082. https://doi.org/10.3390/sym17071082
Chicago/Turabian StyleAlgumaei, Ali, Noorayisahbe Mohd Yaacob, Mohamed Doheir, Mohammed Nasser Al-Andoli, and Mohammed Algumaie. 2025. "Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry" Symmetry 17, no. 7: 1082. https://doi.org/10.3390/sym17071082
APA StyleAlgumaei, A., Yaacob, N. M., Doheir, M., Al-Andoli, M. N., & Algumaie, M. (2025). Symmetric Therapeutic Frameworks and Ethical Dimensions in AI-Based Mental Health Chatbots (2020–2025): A Systematic Review of Design Patterns, Cultural Balance, and Structural Symmetry. Symmetry, 17(7), 1082. https://doi.org/10.3390/sym17071082