Elliptic and Hyperbolic Rotational Motions on General Hyperboloids
Abstract
1. Introduction
2. Preliminaries
- (i)
- If or , then is called a -spacelike vector.
- (ii)
- If , then is called a -timelike vector.
- (iii)
- If and , then is called a -lightlike or -null vector.
- (i)
- If is -spacelike and , which are equivalent to , then
- (ii)
- If is -timelike, which is equivalent to , then
3. Rotations on a General Hyperboloid
3.1. The Rodrigues Rotation Formula
- (i)
- If is unit -spacelike, then
- (ii)
- If is unit -timelike, then
- (i)
- If is unit -spacelike, then and . Thus, we can obtain the matrix of the -rotation by the -angle with the following computations:
- (ii)
- If is unit -timelike, then and . Thus, we can obtain the matrix of the -rotation by the -angle with the following computations:
3.2. The Cayley Rotation Formula
- (i)
- If is unit -spacelike,
- (ii)
- If is unit -timelike, then
- (i)
- If is unit -spacelike,
- (ii)
- If is unit -timelike,
3.3. The Householder Transformation
- (i)
- Suppose that ; then,
- (ii)
- Assume that . It is clear that . If is not -null; thus,
- (iii)
- Assume that and that is -null. Using , we can see thatThen, is not -isotropic, and we have
- (i)
- If , then
- (ii)
- If and is not -null, then
- (iii)
- If and is -null, then is not -null and
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Zhang, F.; Qu, X.; Shi, X. A rapid coordinate transformation method applied in industrial robot calibration based on characteristic line coincidence. Sensors 2016, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.J.; Allen-Blanchette, C.; Zolman, N.; Davison, E.; Leonard, N.E. Learning to predict 3D rotational dynamics from images of a rigid body with unknown mass distribution. Aerospace 2023, 10, 921. [Google Scholar] [CrossRef]
- Vince, J. Rotation Transforms for Computer Graphics; Springer: London, UK, 2011. [Google Scholar]
- Brezov, D. Using rotations to control observable relativistic effects. Mathematics 2024, 12, 1676. [Google Scholar] [CrossRef]
- Chen, H.; Shi, C.; Guo, H.; Liu, R.; Yin, D.; Ji, H.; Deng, Z. Development and rotation characteristics analysis of a large-scale deployable arm. Aerospace 2023, 10, 399. [Google Scholar] [CrossRef]
- Birman, S.; Nomuzi, K. Trigonometry in Lorentzian geometry. Am. Math. Mon. 1984, 91, 543–549. [Google Scholar] [CrossRef]
- Bükcü, B. On the rotation matrices in semi-Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 2006, 55, 7–13. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. On reflections and rotations in Minkowski 3-space of physical phenomena. J. Geom. Symmetry Phys. 2015, 39, 1–16. [Google Scholar] [CrossRef]
- Nešović, E. On rotation about lightlike axis in three-dimensional Minkowski space. Adv. Appl. Clifford Algebras 2016, 26, 237–251. [Google Scholar] [CrossRef]
- Çolakoğlu, H.B.; Özdemir, M. On elliptical motions on a general ellipsoid. Mediterr. J. Math. 2023, 20, 130. [Google Scholar] [CrossRef]
- Şimşek, H.; Özdemir, M. Generating hyperbolical rotation matrix for a given hyperboloid. Linear Algebra Its Appl. 2016, 496, 221–245. [Google Scholar] [CrossRef]
- Çolakoğlu, H.B.; Öztürk, İ.; Özdemir, M. Non-parabolic conical rotations. J. Comput. Appl. Math. 2023, 420, 114766. [Google Scholar] [CrossRef]
- Duru, M.; Çolakoğlu, H.B. Generalized split quaternions and their applications on non-parabolic conical rotations. Symmetry 2023, 15, 1805. [Google Scholar] [CrossRef]
- Özdemir, M.; Ergin, A.A. Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 2006, 56, 322–336. [Google Scholar] [CrossRef]
- López, R. Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. J. Geom. 2014, 7, 44–107. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press Inc.: London, UK, 1983. [Google Scholar]
- Ratcliffe, J.G. Foundations of Hyperbolic Manifolds; Springer: Cham, Switzerland, 2019; pp. 52–70. [Google Scholar]
- Gallier, J.; Xu, D. Computing exponentials of skew symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 2002, 17, 1–11. [Google Scholar]
- Kula, L.; Karacan, M.K.; Yaylı, Y. Formulas for the exponential of semi symmetric matrix of order 4. J. Math. Comput. Appl. 2005, 10, 99–104. [Google Scholar] [CrossRef]
- Özkaldı, S.; Gündoğan, H. Cayley formula, Euler parameters and rotations in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebr. 2010, 20, 367–377. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. Cayley formula in Minkowski space-time. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550058. [Google Scholar] [CrossRef]
- Howard, E. Elementary Matrix Theory; Dover Publications: Boston, MA, USA, 1980. [Google Scholar]
- Mackey, D.S.; Mackey, N.; Tisseur, F. G-reflectors: Analogues of Householder transformations in scalar product spaces. Linear Algebra Its Appl. 2004, 385, 187–213. [Google Scholar] [CrossRef]
- Aragón-González, G.; Aragón, J.L.; Rodríguez-Andrade, M.A. The decomposition of an orthogonal transformation as a product of reflections. J. Math. Phys. 2006, 47, 013509. [Google Scholar] [CrossRef]
- Aragón-González, G.; Aragón, J.L.; Rodríguez-Andrade, M.A.; Verde-Star, L. Reflections, rotations, and Pythagorean numbers. Adv. Appl. Clifford Algebras 2009, 19, 1–14. [Google Scholar] [CrossRef]
- Gallier, J. Geometric Methods and Applications: For Computer Science and Engineering; Springer: New York, NY, USA, 2011. [Google Scholar]
- Rodríguez-Andrade, M.A.; Aragón-González, A.; Aragón, J.L.; Verde-Star, L. An algorithm for the Cartan-Dieudonne theorem on generalized scalar product spaces. Linear Algebra Its Appl. 2011, 434, 1238–1254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çolakoğlu, H.B.; Duru, M. Elliptic and Hyperbolic Rotational Motions on General Hyperboloids. Symmetry 2025, 17, 845. https://doi.org/10.3390/sym17060845
Çolakoğlu HB, Duru M. Elliptic and Hyperbolic Rotational Motions on General Hyperboloids. Symmetry. 2025; 17(6):845. https://doi.org/10.3390/sym17060845
Chicago/Turabian StyleÇolakoğlu, Harun Barış, and Mehmet Duru. 2025. "Elliptic and Hyperbolic Rotational Motions on General Hyperboloids" Symmetry 17, no. 6: 845. https://doi.org/10.3390/sym17060845
APA StyleÇolakoğlu, H. B., & Duru, M. (2025). Elliptic and Hyperbolic Rotational Motions on General Hyperboloids. Symmetry, 17(6), 845. https://doi.org/10.3390/sym17060845