-Tangent Affine Hypersurfaces with an Induced Almost Paracontact Structure
Abstract
1. Introduction
2. Preliminaries
3. Almost Paracontact Structures
4. Main Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaneyuki, S.; Williams, F.L. Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 1985, 99, 173–187. [Google Scholar] [CrossRef]
- Alekseevsky, D.V.; Cort, V.; Galaev, A.S.; Leistner, T. Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 2009, 635, 23–69. [Google Scholar] [CrossRef]
- Alekseevsky, D.V.; Medori, C.; Tomassini, A. Maximally homogeneous para-CR manifolds. Ann. Glob. Anal. Geom. 2006, 30, 1–27. [Google Scholar] [CrossRef]
- Cortés, V.; Mayer, C.; Mohaupt, T.; Saueressing, F. Special geometry of Euclidean supersymmetry I: Vector multiplets. J. High Energy Phys. 2004, 73, 3–28. [Google Scholar] [CrossRef]
- Zamkovoy, S. Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 2009, 36, 37–60. [Google Scholar] [CrossRef]
- Küpeli Erken, I. Some classes of 3-dimensional normal almost paracontact metric manifolds. Honam Math. J. 2015, 37, 457–468. [Google Scholar] [CrossRef]
- Cortés, V.; Lawn, M.A.; Schäfer, L. Affine hyperspheres associated to special para-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 2006, 3, 995–1009. [Google Scholar] [CrossRef]
- Lawn, M.A.; Schäfer, L. Decompositions of para-complex vector bundles and para-complex affine immersions. Results Math. 2005, 48, 246–274. [Google Scholar] [CrossRef]
- Kurosu, S. Relative nullity distributions, an affine immersion from an almost product manifold and a para-pluriharmonic isometric immersion. Ann. Glob. Anal. Geom. 2012, 42, 333–347. [Google Scholar] [CrossRef]
- Szancer, Z.; Szancer, M. Real Hypersurfaces with an induced almost contact structure. Colloq. Math. 2009, 114, 41–51. [Google Scholar] [CrossRef]
- Nomizu, K.; Sasaki, T. Affine Differential Geometry; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Olszak, Z. The Schouten-Van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. L’Institut Math. 2013, 94, 31–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szancer, Z.
Szancer Z.
Szancer, Zuzanna.
2025. "
Szancer, Z.
(2025).