-Tangent Affine Hypersurfaces with an Induced Almost Paracontact Structure
Abstract
:1. Introduction
2. Preliminaries
3. Almost Paracontact Structures
4. Main Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaneyuki, S.; Williams, F.L. Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 1985, 99, 173–187. [Google Scholar] [CrossRef]
- Alekseevsky, D.V.; Cort, V.; Galaev, A.S.; Leistner, T. Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 2009, 635, 23–69. [Google Scholar] [CrossRef]
- Alekseevsky, D.V.; Medori, C.; Tomassini, A. Maximally homogeneous para-CR manifolds. Ann. Glob. Anal. Geom. 2006, 30, 1–27. [Google Scholar] [CrossRef]
- Cortés, V.; Mayer, C.; Mohaupt, T.; Saueressing, F. Special geometry of Euclidean supersymmetry I: Vector multiplets. J. High Energy Phys. 2004, 73, 3–28. [Google Scholar] [CrossRef]
- Zamkovoy, S. Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 2009, 36, 37–60. [Google Scholar] [CrossRef]
- Küpeli Erken, I. Some classes of 3-dimensional normal almost paracontact metric manifolds. Honam Math. J. 2015, 37, 457–468. [Google Scholar] [CrossRef]
- Cortés, V.; Lawn, M.A.; Schäfer, L. Affine hyperspheres associated to special para-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 2006, 3, 995–1009. [Google Scholar] [CrossRef]
- Lawn, M.A.; Schäfer, L. Decompositions of para-complex vector bundles and para-complex affine immersions. Results Math. 2005, 48, 246–274. [Google Scholar] [CrossRef]
- Kurosu, S. Relative nullity distributions, an affine immersion from an almost product manifold and a para-pluriharmonic isometric immersion. Ann. Glob. Anal. Geom. 2012, 42, 333–347. [Google Scholar] [CrossRef]
- Szancer, Z.; Szancer, M. Real Hypersurfaces with an induced almost contact structure. Colloq. Math. 2009, 114, 41–51. [Google Scholar] [CrossRef]
- Nomizu, K.; Sasaki, T. Affine Differential Geometry; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Olszak, Z. The Schouten-Van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. L’Institut Math. 2013, 94, 31–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szancer, Z.
Szancer Z.
Szancer, Zuzanna.
2025. "
Szancer, Z.
(2025).