A Police Booth Planning Method Based on Wolf Pack Optimization Algorithm Using AAF and DGSS
Abstract
:1. Introduction
2. Related Works
2.1. Swarm Intelligence Optimization
2.2. Wolf Pack Optimization Algorithm
2.3. Benchmark Functions
2.4. Problem Formulation (SOOM-MCMO)
3. The Improved Method
3.1. Adaptive-Approaching Factor (AAF)
3.2. Dynamic-Grid-Siege Strategy (DGSS)
3.3. Steps of AAF-DGSS-WPOA
3.4. Steps of PBPM-AAF-DGSS-WPOA
4. Mathematical Experiment
4.1. Experimental Designment
4.2. Experimental Results and Corresponding Analysis
4.3. Experiment and Analysis of Optimal Location of Police Booths
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Order | Full-Name | Abbreviation |
1 | Simultaneous Optimization for Max Coverage and Min Overlap model | SOOM-MCMO |
2 | Adaptive-Approaching Framework with Dynamic-Grid-Siege Wolf Pack Algorithm | AAF-DGS-WPOA |
3 | AAF-DGS-WPOA-based Police Booth Planning Method | PBPM-AAFDGS-WPOA |
4 | Genetic Algorithm | GA |
5 | Particle Swarm Optimization | PSO |
6 | Mentioned in reference [25] | WDX-WPOA |
7 | Adaptive-Approaching Factor | AAF |
8 | Dynamic-Grid-Siege Strategy | DGSS |
References
- Fondevila, G.; Vilalta-Perdomo, C.; Galindo Pérez, M.C.; Cafferata, F.G. Crime deterrent effect of police stations. Appl. Geogr. 2021, 134, 102518. [Google Scholar]
- Stassen, R.; Ceccato, V. Police Accessibility in Sweden: An Analysis of the Spatial Arrangement of Police Services. Polic. A J. Policy Pract. 2021, 15, 896–911. [Google Scholar]
- Jiang, Y.; Guo, B.; Yan, Z. Multi-Criterion Spatial Optimization of Future Police Stations Based on Urban Expansion and Criminal Behavior Characteristics. ISPRS Int. J. Geo-Inf. 2022, 11, 384. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Sun, D.; Lan, T. Spatial Optimization of Mega-City Fire Stations Based on Multi-Source Geospatial Data: A Case Study in Beijing. ISPRS Int. J. Geo-Inf. 2021, 10, 282. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K.; Yuan, Y.; Yang, C. A POIs Based Method for Location Optimization of Urban Fire Station: A Case Study in Zhengzhou City. Fire 2023, 6, 58. [Google Scholar] [CrossRef]
- Yang, J.; Guo, K.; Dai, Y.; Tian, S.; Wang, W.; Jiang, Z.; Dai, Z. Spatial layout siting method for fire stations based on comprehensive forest fire risk distribution. Case Stud. Therm. Eng. 2023, 49, 103243. [Google Scholar]
- De Domingo, M.; Ortigosa, N.; Sevilla, J.; Roger, S. Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain). Sensors 2021, 21, 797. [Google Scholar] [CrossRef] [PubMed]
- KhoshAmooz, G. A new fuzzy location-based approach for fire station site selection in Tehran. Appl. Geomat. 2024, 16, 987–1001. [Google Scholar]
- Tian, F.; Lei, J.; Zheng, X.; Yin, Y. Integrating Space Syntax and Location-Allocation Model for Fire Station Location Planning in a China Mega City. Fire 2023, 6, 64. [Google Scholar] [CrossRef]
- Guo, K.; Wang, W.; Tian, S.; Yang, J.; Jiang, Z.; Dai, Z. Research on Optimization Technology of Cross-Regional Synergistic Deployment of Fire Stations Based on Fire Risk. Sustainability 2022, 14, 15725. [Google Scholar] [CrossRef]
- Shahparvari, S.; Fadaki, M.; Chhetri, P. Spatial accessibility of fire stations for enhancing operational response in Melbourne. Fire Saf. J. 2020, 117, 103149. [Google Scholar]
- Ming, J.; Richard, J.-P.P.; Qin, R.; Zhu, J. Distributionally robust optimization for fire station location under uncertainties. Sci. Rep. 2022, 12, 5394. [Google Scholar]
- Yanchao, S.; Chen, W.; Wu, Y. A New Wolves Intelligent Optimization Algorithm. In Proceedings of the 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS), Shanghai, China, 23–25 June 2021; pp. 143–147. [Google Scholar]
- Lu, N.; Ma, L. Quantum Wolf Pack Evolutionary Algorithm of Weight Decision-Making Based on Fuzzy Control. Chin. J. Electron. 2022, 31, 635–646. [Google Scholar]
- Zhang, H.; Lv, X.; Ma, C.; Cui, L. An Elite Wolf Pack Algorithm Based on the Probability Threshold for a Multi-UAV Cooperative Reconnaissance Mission. Drones 2024, 8, 513. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, Q.; Han, D.; Chen, Y.; Li, Z. A path planning method for unmanned aerial vehicle based on improved wolf pack algorithm. Concurr. Comput. Pract. Exp. 2024, 36, e8095. [Google Scholar]
- Lai, R.; Gao, B.; Lin, W. Solving No-Wait Flow Shop Scheduling Problem Based on Discrete Wolf Pack Algorithm. Sci. Program. 2021, 2021, 4731012. [Google Scholar]
- Sahu, K.K.; Nayak, S.C.; Behera, H.S. Extreme Learning With Metaheuristic Optimization for Exchange Rate Forecasting. Int. J. Swarm Intell. Res. 2022, 13, 1–25. [Google Scholar]
- Zhu, Q.; Wu, H.; Li, N.; Hu, J. A Chaotic Disturbance Wolf Pack Algorithm for Solving Ultrahigh-Dimensional Complex Functions. Complexity 2021, 2021, 6676934. [Google Scholar]
- Wang, H.; Wang, D. A Wolf Pack Optimization Algorithm Using RASGS and GBA for Multi-Modal Multi-Objective Problems. Symmetry 2022, 14, 2568. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, F.; Liu, C.; Cheng, L.; Mao, Y. An improved Wolf pack algorithm for optimization problems: Design and Evaluation. PLoS ONE 2021, 16, e0254239. [Google Scholar]
- Jin, Z. Application of WCA-RBF Neural Network in Fault Diagnosis of Analog Circuits. Int. Trans. Electr. Energy Syst. 2023, 2023, 8812152. [Google Scholar]
- Zhu, J.; Liu, J. A Simple and Scalable Structure of Particle Swarm Optimization Based on Linear System Theory. 2022. Available online: https://www.researchsquare.com/article/rs-2141043/v1 (accessed on 2 April 2025).
- Chompookham, T.; Phiphitphatphaisit, S.; Okafor, E.; Surinta, O. Robust Model Selection for Plant Leaf Image Recognition Based on Evolutionary Ant Colony Optimization With Learning Rate Schedule. IEEE Access 2024, 12, 132369–132389. [Google Scholar]
- Wang, D.; Qian, X.; Liu, K.; Ban, X.; Guan, X. An Adaptive Distributed Size Wolf Pack Optimization Algorithm Using Strategy of Jumping for Raid (September 2018). IEEE Access 2018, 6, 65260–65274. [Google Scholar]
- Kim, J.; Lee, W.; Jung, J.; Choi, J.; Kim, E.; Kim, J. Weighted Localized Clustering: A Coverage-Aware Reader Collision Arbitration Protocol in RFID Networks. In Proceedings of the International Conference on Embedded Software and Systems (ICESS 2005), Xi’an, China, 16–18 December 2005. [Google Scholar]
Order | Function | Expression | Dim | Range | Optim |
---|---|---|---|---|---|
1 | Ackley | 2 | [−32.768,32.768] | Min f = 0 | |
2 | Bukin6 | 2 | [−15,3] | Min f = 0 | |
3 | Drop-Wave | 2 | [−5.12,5.12] | Min f = −1 | |
4 | Eggholder | 2 | [−512,512] | Min f = −959.6407 | |
5 | Griewank | 2 | [−600,600] | Min f = 0 | |
6 | Levy | 2 | [−10,10] | Min f = 0 | |
7 | Levy13 | 2 | [−10,10] | Min f = 0 | |
8 | Cross-In-Tray | F8 = −0.0001 (abs(sin()sin()(abs()))+1)0.1 | 2 | [−10,10] | Min f = −2.06261 |
9 | Schaffer2 | 2 | [−100,100] | Min f = 0 | |
10 | Bohachevsky1 | 2 | [−100,100] | Min f = 0 | |
11 | Perm0-d-β | 2 | [−2,2] | Min f = 0 | |
12 | Rotated Hyper-Ellipsoid | 2 | [−65.536,65.536] | Min f = 0 | |
13 | Sum Squares | 2 | [−10,10] | Min f = 0 | |
14 | Trid | 2 | [−4,4] | Min f = −2 | |
15 | Booth | 2 | [−10,10] | Min f = 0 | |
16 | Matyas | 2 | [−10,10] | Min f = 0 | |
17 | Easom | 2 | [−4,4] | Min f = −1 | |
18 | Eggcrate | 2 | [−π,π] | Min f = 0 | |
19 | Bohachevsky3 | 2 | [−100,100] | Min f = 0 | |
20 | Bridge | 2 | [−10,10] | Min f = −3 |
Order | Algorithm Name | Configure Ration |
---|---|---|
1 | GA | Crossover probability is 0.8, the mutation probability is 0.01, the max iteration T = 600. |
2 | PSO | Inertia weight is 0.5, the Cognitive coefficient is 1.5, the Social coefficient is 1.5, the max iteration T = 600. |
3 | WDX-WPOA | Initial value of search step size step_a0 = 1.5; the initial max value of siege step size step_c_max = 1 × 106 and the minimum value of siege step size step_c_min = 1 × 10−40; the max iteration T = 600;the amount of the wolf population N = 50. |
4 | AAF-DGSS-WPOA | Initial value of search step size step_a0 = 1.5; the initial max value of siege step size step_c_max = 1 × 106 and the minimum value of siege step size step_c_min = 1 × 10−40; the max iteration T = 600; the amount of the wolf population N = 50. |
Function | Algorithm | Optimal Value | Worst Value | Average Value | Standard Deviation | Average Iteration | Average Time |
---|---|---|---|---|---|---|---|
1 Ackley min f = 0 | GA | 7.92 × 10−6 | 0.00012803 | 0.000051735 | 6.95 × 10−10 | 176.7 | 0.23365 |
PSO | 1.71 × 10−5 | 0.00057189 | 0.00011362 | 6.89 × 10−9 | 600 | 0.046053 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 38.3333 | 0.053561 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 32.4 | 0.035122 | |
2 Bukin6 min f = 0 | GA | 0.6912 | 11.2453 | 3.7961 | 2.6443 | 600 | 0.013 |
PSO | 0.0012517 | 0.13 | 0.058051 | 0.041452 | 600 | 0.013559 | |
WDX-WPOA | 0.030632 | 1.1 | 0.67996 | 0.39957 | 600 | 0.99632 | |
AAF-DGSS-WPOA | 0.014982 | 1.1 | 0.51109 | 0.36422 | 600 | 0.65582 | |
3 Drop-Wave min f = −1 | GA | −0.99992 | −0.78573 | −0.93986 | 0.04808 | 600 | 0.012028 |
PSO | −1 | −0.93625 | −0.98512 | 0.026965 | 218.6333 | 0.004777 | |
WDX-WPOA | −1 | −1 | −1 | 0 | 49.5 | 0.065078 | |
AAF-DGSS-WPOA | −1 | −1 | −1 | 0 | 47.8 | 0.058533 | |
4 Eggholder min f = −959.6407 | GA | −959.6387 | −629.6112 | −876.5954 | 78.8508 | 600 | 0.012111 |
PSO | −959.6407 | −718.1675 | −926.7076 | 53.5701 | 600 | 0.012546 | |
WDX-WPOA | −959.6407 | −935.338 | −947.2171 | 11.904 | 600 | 1.0656 | |
AAF-DGSS-WPOA | −959.6404 | −935.3379 | −948.744 | 11.7553 | 600 | 0.65137 | |
5 Griewank min f = 0 | GA | 0.004788 | 0.31789 | 0.075813 | 0.063402 | 600 | 0.013661 |
PSO | 0 | 0.019719 | 0.0026303 | 0.0045421 | 339.3 | 0.0085504 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 17.5667 | 0.025562 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 13.5 | 0.019246 | |
6 Levy min f = 0 | GA | 0.00024335 | 1.1263 | 0.12324 | 0.21281 | 600 | 0.038618 |
PSO | 1.50 × 10−32 | 1.50 × 10−32 | 1.50 × 10−32 | 1.09 × 10−47 | 600 | 0.039204 | |
WDX-WPOA | 0 | 2.68 × 10−11 | 9.79 × 10−13 | 4.81 × 10−12 | 569.7667 | 0.87339 | |
AAF-DGSS-WPOA | 0 | 0.39478 | 0.013159 | 0.070865 | 479.1333 | 0.7371 | |
7 Levy13 min f = 0 | GA | 0.011247 | 2.2797 | 0.22303 | 0.76184 | 600 | 0.01238 |
PSO | 0.00010961 | −0.97283 | −0.97283 | 3.33 × 10−16 | 600 | 0.012789 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 27.0667 | 0.038007 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 21.7 | 0.03573 | |
8 CROSS-IN-TRAY min f = −2.06261 | GA | −2.0556 | −1.6954 | −1.8635 | 0.2652 | 14.3 | 0.008943 |
PSO | −2.0556 | −0.96923 | −1.5411 | 0.29142 | 600 | 0.016291 | |
WDX-WPOA | −2.0626 | −2.0626 | −2.0626 | 0 | 4.0333 | 0.0097716 | |
AAF-DGSS-WPOA | −2.0626 | −2.0626 | −2.0626 | 0 | 3.785 | 0.0090403 | |
9 Schaffer2 min f = 0 | GA | 1.03 × 10−6 | 0.042464 | 0.010477 | 0.0093243 | 600 | 0.01321 |
PSO | 0 | 0 | 0 | 0 | 66.9667 | 0.0019346 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 11.7333 | 0.016255 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 9.7 | 0.012018 | |
10 Bohachevsky1 min f = 0 | GA | 0.011268 | 0.91934 | 0.48134 | 0.25563 | 600 | 0.011984 |
PSO | 0 | 0 | 0 | 0 | 78.1667 | 0.0017231 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 14.5 | 0.020572 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 12.3 | 0.017201 | |
11 Perm0-d-β min f = 0 | GA | 0.011057 | 388.7314 | 26.2837 | 71.8592 | 600 | 0.01213 |
PSO | 0 | 0 | 0 | 0 | 175.3667 | 0.0052171 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 26.4 | 0.030897 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 21.7667 | 0.024111 | |
12 Rotated Hyper-Ellipsoi min f = 0 | GA | 0.00039244 | 0.12985 | 0.034819 | 0.03493 | 600 | 0.012687 |
PSO | 1.96 × 10−134 | 1.02 × 10−129 | 8.56 × 10−131 | 2.28 × 10−130 | 600 | 0.013828 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 26.3 | 0.029679 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 22.7 | 0.023062 | |
13 Sum Squares min f = 0 | GA | 2.42 × 10−6 | 0.0025094 | 0.00051005 | 0.00048937 | 600 | 0.012084 |
PSO | 5.91 × 10−137 | 2.18 × 10−132 | 3.76 × 10−133 | 5.82 × 10−133 | 600 | 0.013233 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 26.2667 | 0.029123 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 21.1667 | 0.023601 | |
14 Trid min f = −2 | GA | −0.037736 | −1.9991 | −1.8925 | 0.11219 | 600 | 0.01241 |
PSO | −2 | −2 | −2 | 0 | 600 | 0.014356 | |
WDX-WPOA | −2 | −2 | −2 | 0 | 12.8 | 0.013702 | |
AAF-DGSS-WPOA | −2 | −2 | −2 | 0 | 9.1667 | 0.012218 | |
15 Booth min f = 0 | GA | 4.93 × 10−12 | 4.92 × 10−9 | 8.73 × 10−10 | 1.11 × 10−18 | 74.79 | 0.088336 |
PSO | 5.62 × 10−23 | 8.78 × 10−17 | 5.13 × 10−18 | 2.36 × 10−34 | 600 | 0.02997 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 25.1333 | 0.027151 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 20.4 | 0.023447 | |
16 Matyas min f = 0 | GA | 9.11 × 10−6 | 0.042161 | 0.010059 | 0.010711 | 600 | 0.01241 |
PSO | 1.76 × 10−120 | 2.71 × 10−116 | 2.87 × 10−117 | 5.48 × 10−117 | 600 | 0.013081 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 25.5 | 0.030189 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 20.3333 | 0.02357 | |
17 Easom min f = −1 | GA | −1 | 0 | −0.75001 | 0.18749 | 72.91 | 0.084762 |
PSO | −1 | −6.30 × 10−61 | −0.90001 | 0.089988 | 593.02 | 0.033852 | |
WDX-WPOA | −1 | −1 | −1 | 0 | 13.6667 | 0.018649 | |
AAF-DGSS-WPOA | −1 | −1 | −1 | 0 | 11.7333 | 0.014768 | |
18 Eggcrate min f = 0 | GA | 1.13 × 10−11 | 3.20 × 10−8 | 4.13 × 10−9 | 4.66 × 10−17 | 74.59 | 0.085997 |
PSO | 6.23 × 10−24 | 1.42 × 10−8 | 1.42 × 10−10 | 1.99 × 10−18 | 597.56 | 0.030566 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 26.2 | 0.032477 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 21.0667 | 0.026856 | |
19 Bohachevsky3 min f = 0 | GA | 0.012263 | 1.3156 | 0.49003 | 0.33209 | 600 | 0.023037 |
PSO | 0 | 0 | 0 | 0 | 78.2 | 0.014223 | |
WDX-WPOA | 0 | 0 | 0 | 0 | 14.4 | 0.019403 | |
AAF-DGSS-WPOA | 0 | 0 | 0 | 0 | 12.1333 | 0.017448 | |
20 Bridge min f = -3 | GA | −2.0588 | −2.0077 | −2.0175 | 0.0098833 | 600 | 0.017844 |
PSO | −3.0054 | −2.0487 | −2.748 | 0.39821 | 600 | 0.019433 | |
WDX-WPOA | −3.0054 | −3.0054 | −3.0054 | 4.44 × 10−16 | 600 | 0.73772 | |
AAF-DGSS-WPOA | −3.0054 | −3.0054 | −3.0054 | 4.44 × 10−16 | 600 | 0.63927 |
Algorithm | WDX-WPOA | AAF-DGSS-WPOA | Improvement Rate | |
---|---|---|---|---|
Function | ||||
F1 | 0.053561 | 0.035122 | 34.43% | |
F2 | 0.99632 | 0.65582 | 34.18% | |
F3 | 0.065078 | 0.058533 | 10.06% | |
F4 | 1.0656 | 0.65137 | 38.87% | |
F5 | 0.025562 | 0.019246 | 24.71% | |
F6 | 0.87339 | 0.7371 | 15.60% | |
F7 | 0.038007 | 0.03573 | 5.99% | |
F8 | 0.0097716 | 0.0090403 | 7.48% | |
F9 | 0.016255 | 0.012018 | 26.07% | |
F10 | 0.020572 | 0.017201 | 16.39% | |
F11 | 0.030897 | 0.024111 | 21.96% | |
F12 | 0.029679 | 0.023062 | 22.30% | |
F13 | 0.029123 | 0.023601 | 18.96% | |
F14 | 0.013702 | 0.012218 | 10.83% | |
F15 | 0.027151 | 0.023447 | 13.64% | |
F16 | 0.030189 | 0.02357 | 21.93% | |
F17 | 0.018649 | 0.014768 | 20.81% | |
F18 | 0.032477 | 0.026856 | 17.31% | |
F19 | 0.019403 | 0.017448 | 10.08% | |
F20 | 0.73772 | 0.63927 | 13.35% |
Result | Optimal Value | Average Value | Average Coverage Rate | Average Overlap Rate | Average Time | |
---|---|---|---|---|---|---|
Algorithm | ||||||
GA | 1297.2 | 1152.712 | 79.48% | 61.78% | 273.0579 | |
PSO | 1096.2 | 926.284 | 67.21% | 65.39% | 2598.784 | |
WDX-WPOA | 1476.9 | 1382.266 | 95.05% | 37.35% | 17,496.85 | |
AAF-DGSS-WPOA CCCCWCWOACWOA | 1563.7 | 1476.831 | 97.54% | 36.76% | 14,584.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Sun, Z.; Wu, F. A Police Booth Planning Method Based on Wolf Pack Optimization Algorithm Using AAF and DGSS. Symmetry 2025, 17, 692. https://doi.org/10.3390/sym17050692
Wang D, Sun Z, Wu F. A Police Booth Planning Method Based on Wolf Pack Optimization Algorithm Using AAF and DGSS. Symmetry. 2025; 17(5):692. https://doi.org/10.3390/sym17050692
Chicago/Turabian StyleWang, Dongxing, Zhishu Sun, and Fangbo Wu. 2025. "A Police Booth Planning Method Based on Wolf Pack Optimization Algorithm Using AAF and DGSS" Symmetry 17, no. 5: 692. https://doi.org/10.3390/sym17050692
APA StyleWang, D., Sun, Z., & Wu, F. (2025). A Police Booth Planning Method Based on Wolf Pack Optimization Algorithm Using AAF and DGSS. Symmetry, 17(5), 692. https://doi.org/10.3390/sym17050692