Einstein-like Poisson Warped Product Manifolds and Applications
Abstract
:1. Introduction
2. Preliminaries
2.1. Poisson Brackets
2.2. Contravariant Connections
- (i)
- For any smooth function , the mapping is -linear, i.e.,
- (ii)
- For any , the map acts as a derivation
2.3. Horizontal and Vertical Lifts
2.4. Poisson Warped Product Manifolds
- 1.
- For i = 1,2, the manifold has dimensions , where .
- 2.
- is the anchor map associated with the Poisson tensor on .
- 3.
- The Koszul bracket on is denoted by .
- 4.
- is the field endomorphism that is related to and the metric .
- 5.
- The Levi-Civita contravariant connection associated with is denoted by .
- 6.
- The contravariant Ricci curvature of is denoted by .
- 7.
- The contravariant Hessian of the warping function f on is denoted by .
3. Contravariant Einstein-like Poisson Warped Product Manifolds
3.1. Class
- 1.
- is contravariant Einstein-like of class if and only iffor any .
- 2.
- is contravariant Einstein-like of class .
- The first one yieldsIf N is Einstein-like of class , thenConsequently, is Einstein-like of class if and only ifThus, the first part of the theorem follows.
- For the second case, where , we obtainIf N is Einstein-like of class , thenConsequently, is contravariant Einstein-like of class .
3.2. Class
- 1.
- is contravariant Einstein-like of class if and only if for any and , we havewhere .
- 2.
- is contravariant Einstein-like of class .
3.3. Class
- 1.
- is a contravariant Einstein-like Poisson manifold of class if and only if
- 2.
- is a contravariant Einstein-like Poisson manifold of class .
4. Physical Applications
4.1. Einstein-like Poisson Warped Spacetimes with One-Dimensional Base
4.2. Einstein-like Poisson Warped Spacetimes with Two-Dimensional Base
- 1.
- is contravariant Einstein-like of class (resp. , ) if and only if the tensor defined for any byis cyclic-parallel (resp. Codazzi, parallel).
- 2.
- is Einstein-like of class (resp. class , ).
4.3. Einstein-like Poisson Warped Spacetimes with Three-Dimensional Base
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poisson, S.-D. Mémoire sur la variation des constantes arbitraires dans les questions de mécanique. J. Éc. Polytech. 1809, 8, 266–344. [Google Scholar]
- Lichnerowicz, A. Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 1977, 12, 253–300. [Google Scholar] [CrossRef]
- Vaisman, I. Lectures on the Geometry of Poisson Manifolds; Progress in Mathematics; Birkhäuser: Berlin, Germany, 1994. [Google Scholar]
- Fernandes, R.L. Connections in Poisson geometry I. Holonomy and invariants. J. Differ. Geom. 2000, 54, 303–365. [Google Scholar] [CrossRef]
- Kaneko, Y.; Muraki, H.; Watamura, S. Contravariant gravity on Poisson manifolds and Einstein gravity. Class. Quantum Gravity 2017, 34, 115002. [Google Scholar] [CrossRef]
- Pigazzini, A.; Lussardi, L.; Toda, M.; DeBenedictis, A. Einstein warped-product manifolds and the screened Poisson equation. arXiv 2024, arXiv:2407.20381. [Google Scholar] [CrossRef]
- Yadav, S.K.; Suhar, D.L. Kenmostu manifolds with quarter-symmetric non-metric connections. Montes Taurus J. Pure Appl. Math. 2023, 5, 78–89. [Google Scholar]
- Agarwal, R.; Mofarreh, F.; Yadav, S.K.; Ali, S.; Haseeb, A. On Riemannian warped-twisted product submersions. Aims Math. 2024, 9, 2925–2937. [Google Scholar] [CrossRef]
- Aloui, F.; Al-Dayel, I. Einstein doubly warped product Poisson manifolds. Symmetry 2025, 17, 342. [Google Scholar] [CrossRef]
- Aloui, F.; Hui, K.S.; Al-Dayel, I. Contravariant curvatures of doubly warped product Poisson manifolds. Mathematics 2024, 12, 1205. [Google Scholar] [CrossRef]
- Pal, B.; Kumar, P. Einstein Poisson warped product space. Class. Quant. Grav. 2021, 38, 065004. [Google Scholar] [CrossRef]
- Bishop, R.L.; O’Neill, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–49. [Google Scholar] [CrossRef]
- Gray, A. Einstein-like manifolds which are not Einstein. Geom. Dedicata 1978, 7, 259–280. [Google Scholar] [CrossRef]
- Besse, A.-L. Einstein Manifolds; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Boeckx, E. Einstein like semisymmetric spaces. Archiv. Math. 1992, 29, 235–240. [Google Scholar]
- Deszcz, R.; Verheyen, P.; Verstraelen, L. On some generalized Einstein metric conditions. Publ. Inst. Math. Nouv. Serie. 1996, 60, 108–120. [Google Scholar] [CrossRef]
- Bueken, P.; Vanhecke, L. Three- and four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 1999, 75, 123–136. [Google Scholar] [CrossRef]
- Peng, C.-K.; Qian, C. Homogeneous Einstein-like metrics on spheres and projective spaces. Differ. Geom. Appl. 2016, 44, 63–76. [Google Scholar] [CrossRef]
- Zaeim, A.; Haji-Badali, A. Einstein-like pseudo-Riemannian homogeneous manifolds of dimension four. Mediterr. J. Math. 2016, 13, 3455–3468. [Google Scholar] [CrossRef]
- Hoda, K.-E.; Carlo, A.-M.; Sameh, S.; Noha, S. Gray’s Decomposition on Doubly Warped Product Manifolds and Applications. Filomat 2020, 34, 3767–3776. [Google Scholar]
- Mantica, C.; Sameh, S. Einstein-like warped product manifolds. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750166. [Google Scholar] [CrossRef]
- Amrane, Y.A.; Nasri, R.; Zeglaoui, A. Warped Poisson brackets on warped products. J. Geom. Mech. 2014, 6, 279–296. [Google Scholar] [CrossRef]
- Sassi, Z. A Laplace operator for Poisson manifolds. Differ. Geom. Appl. 2020, 68, 101576. [Google Scholar] [CrossRef]
- Djebbouri, D.; Ouakkas, S. Product of statistical manifolds with doubly warped product. Gen. Math. Notes. 2015, 31, 16–28. [Google Scholar]
- Nasri, R.; Djaa, M. Sur la courbure des variétés riemanniennes produits. Sci. Technol. 2006, 24, 15–20. [Google Scholar]
- Shaikh, A.S.; Yoon, W.D.; Hui, K.S. On Quasi-Einstein spacetimes. Tsukuba J. Math. 2009, 33, 305–326. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloui, F. Einstein-like Poisson Warped Product Manifolds and Applications. Symmetry 2025, 17, 645. https://doi.org/10.3390/sym17050645
Aloui F. Einstein-like Poisson Warped Product Manifolds and Applications. Symmetry. 2025; 17(5):645. https://doi.org/10.3390/sym17050645
Chicago/Turabian StyleAloui, Foued. 2025. "Einstein-like Poisson Warped Product Manifolds and Applications" Symmetry 17, no. 5: 645. https://doi.org/10.3390/sym17050645
APA StyleAloui, F. (2025). Einstein-like Poisson Warped Product Manifolds and Applications. Symmetry, 17(5), 645. https://doi.org/10.3390/sym17050645