Recommendation Model Based on Global Intention Learning and Sequence Augmentation
Abstract
:1. Introduction
- (1)
- How to improve sequence augmentation methods and enhance the quality of augmented data?
- (2)
- How to develop the correlation information of different users with the same subsequences and further mine global intention information?
2. Model
2.1. Definitions and Notations
2.2. An Overview of the Proposed Framework
2.3. The Sequence Information Extraction Module
2.4. The Sequence Augmentation Module
2.5. The Intent Contrastive Learning Module
2.6. The Loss Function for Model Training
Algorithm 1: Pseudo-code of RM-GILSA. |
1: While RM-GILSA Not Convergence do: |
2: for x in Dataloader (X) do |
3: Construct a global item correlation graph as the original graph, and obtain a refined graph through small perturbations; |
4: Use a graph encoder to generate representations of the original graph and the refined graph , ; |
5: Calculate the graph contrastive loss ; |
6: Perform data augmentation on the original sequence; |
7: Select two sequences with the same target item, and obtain their interest representations , through the sequence encoder; |
8: Select the intent prototype , that is closest to , . |
9: Calculate the intent contrastive loss ; |
10: Generate the item embedding matrix B; |
11: Combine B with the interest representation I to calculate the next-item prediction loss ; |
12: Calculate total loss L; |
13: end for |
14: end while |
15: Return L |
2.7. Computational Complexity Analysis
3. Experiments and Results
3.1. Datasets and Experimental Settings
3.2. Comparison and Analysis of Model Results
3.3. Ablation Study
3.3.1. Effect of Sequence Information Extraction Module
3.3.2. Effect of Sequence Augmentation Module
3.3.3. Effect of Intent Contrastive Learning Module
3.3.4. Runtime Performance Analysis
3.4. The Impact of the Number of Intent Classes on Model Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Zheng, Z.; Qiu, Z.; Wang, H.; Gu, H.; Shen, T.; Qin, C.; Zhu, C.; Zhu, H.; Liu, Q.; et al. A survey on large language models for recommendation. arXiv 2024, arXiv:2305.19860. Available online: https://arxiv.org/abs/2305.19860 (accessed on 18 August 2024). [CrossRef]
- Wu, C.Y.; Ahmed, A.; Beutel, A.; Smola, A.J.; Jing, H. Recurrent recommender networks. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; ACM: New York, NY, USA, 2017; pp. 495–503. [Google Scholar]
- Ren, R.; Liu, Z.; Li, Y.; Zhao, W.X.; Wang, H.; Ding, B.; Wen, J.R. Sequential recommendation with self-attentive multi-adversarial network. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; ACM: New York, NY, USA, 2020; pp. 89–98. [Google Scholar]
- Wang, S.; Zhang, Q.; Hu, L.; Zhang, X.; Wang, Y.; Aggarwal, C. Sequential/session-based recommendations: Challenges, approaches, applications and opportunities. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Mardrid, Spain, 11–15 July 2022; ACM: New York, NY, USA, 2022; pp. 3425–3428. [Google Scholar]
- Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; ACM: New York, NY, USA, 2019; pp. 1441–1450. [Google Scholar]
- Li, Y.; Chen, T.; Zhang, P.; Yin, H. Lightweight Self-Attentive Sequential Recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Gold Coast, QLD, Australia, 1–5 November 2021; ACM: New York, NY, USA, 2021; pp. 967–977. [Google Scholar]
- Liu, Z.; Fan, Z.; Wang, Y.; Philip, S.Y. Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer. arXiv 2021, arXiv:2105.00522. Available online: https://arxiv.org/abs/2105.00522 (accessed on 18 August 2024).
- Jing, M.; Zhu, Y.; Zang, T.; Wang, K. Contrastive self-supervised learning in recommender systems: A survey. ACM Trans. Inf. Syst. 2023, 42, 1–39. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Los Angeles, CA, USA, 5–9 February 2018; ACM: New York, NY, USA, 2018; pp. 565–573. [Google Scholar]
- Dang, Y.; Zhang, J.; Liu, Y. Augmenting Sequential Recommendation with Balanced Relevance and Diversity. arXiv 2024, arXiv:2412.08300. Available online: https://arxiv.org/abs/2412.08300 (accessed on 18 August 2024).
- Li, Y.; Luo, Y.; Zhang, Z.; Sadiq, S.; Cui, P. Context-aware attention-based data augmentation for POI recommendation. In Proceedings of the ICDEW, Macao, China, 8–12 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 177–184. [Google Scholar]
- Liu, Q.; Yan, F.; Zhao, X.; Du, Z.; Guo, H.; Tang, R.; Tian, F. Diffusion augmentation for sequential recommendation. In Proceedings of the CIKM, Birmingham, UK, 21–25 October 2023; pp. 1576–1586. [Google Scholar]
- Wang, J.; Le, Y.; Chang, B.; Wang, Y.; Chi, E.H.; Chen, M. Learning to augment for casual user recommendation. In Proceedings of the WWW, Lyon, France, 25–29 April 2022; pp. 2183–2194. [Google Scholar]
- Xie, X.; Sun, F.; Liu, Z.; Wu, S.; Gao, J.; Zhang, J.; Ding, B.; Cui, B. Contrastive learning for sequential recommendation. arXiv 2020, arXiv:2010.14395. Available online: https://arxiv.org/abs/2010.14395 (accessed on 18 August 2024).
- Liu, Z.; Chen, Y.; Li, J.; Yu, P.S.; McAuley, J.; Xiong, C. Contrastive Self-supervised Sequential Recommendation with Robust Augmentation. arXiv 2021, arXiv:2108.06479. Available online: https://arxiv.org/abs/2108.06479 (accessed on 18 August 2024).
- Qiu, R.; Huang, Z.; Yin, H.; Wang, Z. Contrastive learning for representation degeneration problem in sequential recommendation. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; ACM: New York, NY, USA, 2022; pp. 813–823. [Google Scholar]
- Qin, X.; Yuan, H.; Zhao, P.; Fang, J.; Zhuang, F.; Liu, G.; Liu, Y.; Sheng, V. Meta-optimized contrastive learning for sequential recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, China, 23–27 July 2023; ACM: New York, NY, USA, 2023; pp. 89–98. [Google Scholar]
- Dang, Y.; Yang, E.; Guo, G.; Jiang, L.; Wang, X.; Xu, X.; Sun, Q.; Liu, H. TiCoSeRec: Augmenting Data to Uniform Sequences by Time Intervals for Effective Recommendation. IEEE Trans. Knowl. Data Eng. 2023, 36, 2686–2700. [Google Scholar] [CrossRef]
- Dang, Y.; Yang, E.; Guo, G.; Jiang, L.; Wang, X.; Xu, X.; Sun, Q.; Liu, H. Uniform sequence better: Time interval aware data augmentation for sequential recommendation. In Proceedings of the AAAI, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 4225–4232. [Google Scholar]
- Wang, S.; Hu, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.; Cao, L. Modeling multi-purpose sessions for next-item recommendations via mixture-channel purpose routing networks. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; Nanyang Technological University: Singapore, 2019; pp. 879–890. [Google Scholar]
- Liu, Z.; Li, X.; Fan, Z.; Guo, S.; Achan, K.; Yu, P.S. Basket recommendation with multi-intent translation graph neural network. In Proceedings of the 5th IEEE International Conference on Big Data, Xiamen, China, 10–13 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 728–737. [Google Scholar]
- Pan, Z.; Cai, F.; Ling, Y.; De Rijke, M. An intent guided collaborative machine for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; ACM: New York, NY, USA, 2020; pp. 1833–1836. [Google Scholar]
- Ma, J.; Zhou, C.; Yang, H.; Cui, P.; Wang, X.; Zhu, W. Disentangled self-supervision in sequential recommenders. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery& Data Mining, San Diego, CA, USA, 23–27 August 2020; ACM: New York, NY, USA, 2020; pp. 483–491. [Google Scholar]
- Tanjim, M.M.; Su, C.; Benjamin, E.; Hu, D.; Hong, L.; McAuley, J. Attentive sequential models of latent intent for next item recommendation. In Proceedings of the 29th Web Conference, Taipei, China, 20–24 April 2020; ACM: New York, NY, USA, 2020; pp. 2528–2534. [Google Scholar]
- Chen, Y.; Liu, Z.; Li, J.; McAuley, J.; Xiong, C. Intent contrastive learning for sequential recommendation. In Proceedings of the 31th International Conference on World Wide Web, Lyons, France, 25–29 April 2022; ACM: New York, NY, USA, 2022; pp. 2172–2182. [Google Scholar]
- Liu, Y.; Zhu, S.; Xia, J.; Ma, Y.; Ma, J.; Liu, X.; Yu, S.; Zhang, K.; Zhong, W. End-to-end learnable clustering for intent learning in recommendation. In Proceedings of the 38th Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 9–15 December 2024. [Google Scholar]
- Zhou, P.; Gao, J.; Xie, Y.; Ye, Q.; Hua, Y.; Kim, J.; Wang, S.; Kim, S. Equivariant contrastive learning for sequential recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, Singapore, 18–22 September 2023; ACM: New York, NY, USA, 2023; pp. 79–86. [Google Scholar]
- Li, X.; Sun, A.; Zhao, M.; Yu, J.; Zhu, K.; Jin, D.; Yu, M.; Yu, R. Multi-intention oriented contrastive learning for sequential recommendation. In Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March 2023; ACM: New York, NY, USA, 2023; pp. 411–419. [Google Scholar]
- Li, Z.; Wang, X.; Yang, C.; Yao, L.; McAuley, J.; Xu, G. Exploiting explicit and implicit item relationships for session-based recommendation. In Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March 2023; ACM: New York, NY, USA, 2023; pp. 553–561. [Google Scholar]
- Wang, Z.; Wei, W.; Cong, G.; Li, X.L.; Mao, X.L.; Qiu, M. Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; ACM: New York, NY, USA, 2020; pp. 169–178. [Google Scholar]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; ACM: New York, NY, USA, 2020; pp. 639–648. [Google Scholar]
- Cai, X.; Huang, C.; Xia, L.; Ren, X. LightGCL: Simple yet effective graph contrastive learning for recommendation. In Proceedings of the 11th International Conference on Learning Representations, ICLR, Kigali, Rwanda, 1–5 May 2023; pp. 127–135. [Google Scholar]
- Tan, Y.K.; Xu, X.; Liu, Y. Improved recurrent neural networks for session-based recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; ACM: New York, NY, USA, 2016; pp. 17–22. [Google Scholar]
- Ma, M.; Ren, P.; Chen, Z.; Ren, Z.; Zhao, L.; Liu, P.; Ma, J.; de Rijke, M. Mixed Information Flow for Cross-Domain Sequential Recommendations. ACM Trans. Knowl. Discov. Data 2022, 16, 64. [Google Scholar] [CrossRef]
- Kang, W.C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the 11th IEEE International Conference on Data Mining, Sentosa, Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 197–206. [Google Scholar]
- Shin, Y.; Choi, J.; Wi, H.; Park, N. An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention. arXiv 2024, arXiv:2312.10325. Available online: https://arxiv.org/abs/2312.10325 (accessed on 28 March 2025). [CrossRef]
- Wei, Z.; Wu, N.; Li, F.; Wang, K.; Zhang, W. MoCo4SRec: A momentum contrastive learning framework for sequential recommendation. Expert Syst. Appl. 2023, 223, 119911. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Li, C.; Li, T.; Wang, H. KMPR-AEP: Knowledge-Enhanced Multi-task Parallelized Recommendation Algorithm Incorporating Attention-Embedded Propagation. Int. J. Comput. Intell. Syst. 2024, 17, 213. [Google Scholar] [CrossRef]
- Celik, E.; Omurca, S.I. Skip-Gram and Transformer Model for Session-Based Recommendation. Appl. Sci. 2024, 14, 635. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015; pp. 231–237. [Google Scholar]
- Chen, Y.; Lin, J.; Xiong, C. ELECRec: Training sequential recommenders as discriminators. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; ACM: New York, NY, USA, 2022; pp. 2671–2678. [Google Scholar]
Dataset | #User | #Item | #Action | Avg. Len. | Sparsity |
---|---|---|---|---|---|
Sports | 35,598 | 18,357 | 296,337 | 99.95% | 8.3 |
Toys | 19,412 | 11,924 | 167,597 | 99.93% | 8.6 |
LastFM | 1090 | 3646 | 52,551 | 98.68% | 48.2 |
Parameter Name | Value |
---|---|
batch_size | 256 |
learning rate | 0.001 |
weight_decay | 0 |
hidden_size | 64 |
maximum sequence length | 50 |
num_attention_heads | 2 |
dropout rate | 0.5 |
graph contrastive learning strength | 0.2 |
intent contrastive learning strength | 0.05 |
Model | Sports | Toys | LastFM | |||
---|---|---|---|---|---|---|
Hit@10 | NDCG@10 | Hit@10 | NDCG@10 | Hit@10 | NDCG@10 | |
SASRec | 0.0320 | 0.0172 | 0.0696 | 0.0398 | 0.0633 | 0.0355 |
CoSeRec | 0.0437 | 0.0242 | 0.0771 | 0.0447 | 0.0459 | 0.0273 |
DuoRec | 0.0466 | 0.0244 | 0.0927 | 0.0443 | 0.0624 | 0.0361 |
ELECRec | 0.0541 | 0.0319 | 0.0996 | 0.0627 | 0.0624 | 0.0366 |
ICLRec | 0.0450 | 0.0242 | 0.0837 | 0.0482 | 0.0505 | 0.0305 |
MCLRec | 0.0501 | 0.0260 | 0.0921 | 0.0468 | 0.0569 | 0.0317 |
ELCRec | 0.0426 | 0.0231 | 0.0859 | 0.0492 | 0.0495 | 0.0282 |
BASRec | 0.0436 | 0.0242 | 0.0825 | 0.0493 | 0.0642 | 0.0366 |
Ours | 0.0567 ± 0.0009 | 0.0335 ± 0.0004 | 0.1065 ± 0.0015 | 0.0667 ± 0.0011 | 0.0679 ± 0.0007 | 0.0416 ± 0.009 |
Improvement | 4.81% | 5.02% | 6.93% | 6.38% | 5.76% | 13.66% |
Model | Runtime | CPU Utilization |
---|---|---|
ICLRec | 2 h 7 min | 59% |
BASRec | 53 min | 48% |
Ours | 3 h 20 min | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lu, W.; Cai, X. Recommendation Model Based on Global Intention Learning and Sequence Augmentation. Symmetry 2025, 17, 586. https://doi.org/10.3390/sym17040586
Li M, Lu W, Cai X. Recommendation Model Based on Global Intention Learning and Sequence Augmentation. Symmetry. 2025; 17(4):586. https://doi.org/10.3390/sym17040586
Chicago/Turabian StyleLi, Minghui, Wei Lu, and Xiaodong Cai. 2025. "Recommendation Model Based on Global Intention Learning and Sequence Augmentation" Symmetry 17, no. 4: 586. https://doi.org/10.3390/sym17040586
APA StyleLi, M., Lu, W., & Cai, X. (2025). Recommendation Model Based on Global Intention Learning and Sequence Augmentation. Symmetry, 17(4), 586. https://doi.org/10.3390/sym17040586