Existence and Uniqueness of Positive Solutions for Singular Asymmetric Multi-Phase Equations
Abstract
:1. Introduction
- for , the classical Laplacian operator ;
- for , the r-Laplacian ;
- with , the -Laplacian, ;
- , the r-mean curvature operator;
- , the Minkowski-curvature operator;
- , for , ;
- , for and ;
- , for and ;
- , for all .
- , , such that .
- , for all .
- the map is strictly increasing on and
- there exists a constant , such that
- for all and for all , we have
- is a Carathéodory function and there exist and , such that for a.a. and all , where in addition in case if ( being given by (3)). Moreover, for any there exists , such that
- there exists such that for a.a. , for all .
2. Preliminaries
2.1. Spaces Setting
- 1.
- if and , then, ;
- 2.
- ;
- 3.
- if , then ;
- 4.
- if , then ;
- 5.
- if and only if ;
- 6.
- if and only if ;
- 7.
- if and only if .
2.2. Some Useful Tools
3. Purely Singular Problem
4. Existence of Positive Solutions
5. Uniqueness
- the map is nonincreasing for a.a. ;
- the map is convex.
6. Conclusions
- 1.
- Extension to the variable exponent setting;
- 2.
- Analysis in the fractional (nonlocal) framework;
- 3.
- Treatment of the strongly singular case in the reaction term, i.e., ;
- 4.
- Further generalisations using new analytical techniques, as in He-Anjum-He-Alsolami [16] and related works.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Filippis, C. Optimal gradient estimates for multi-phase integrals. Math. Eng. 2022, 4, 043. [Google Scholar] [CrossRef]
- De Filippis, C.; Oh, J. Regularity for multi-phase variational problems. J. Differ. Equations 2019, 267, 1631–1670. [Google Scholar] [CrossRef]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 1986, 50, 675–710. [Google Scholar] [CrossRef]
- Zhikov, V.V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 2011, 173, 463–570. [Google Scholar] [CrossRef]
- Dai, G.; Vetro, F. Regularity and uniqueness to multi-phase problem with variable exponent. arXiv 2024, arXiv:2407.14123. [Google Scholar]
- Vetro, F. A priori upper bounds and extremal weak solutions for multi-phase problems with variable exponents. Discrete Contin. Dyn. Syst. Ser. S 2024. [Google Scholar] [CrossRef]
- Vetro, F. Multiplicity of Solutions for a Kirchhoff Multi-Phase Problem with Variable Exponents. Acta Appl. Math. 2025, 195, 5. [Google Scholar] [CrossRef]
- Vetro, F.; Efendiev, R. Multi-phase problems with variable exponents: Existence of divergent sequences of weak solutions. Discrete Contin. Dyn. Syst. Ser. S 2025. [Google Scholar] [CrossRef]
- Bahrouni, A.; Rădulescu, V.D.; Repovš, D.D. Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves. Nonlinearity 2019, 32, 2481–2495. [Google Scholar] [CrossRef]
- Benci, V.; D’Avenia, P.; Fortunato, D.; Pisani, L. Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 2000, 154, 297–324. [Google Scholar] [CrossRef]
- Bonheure, D.; D’Avenia, P.; Pomponio, A. On the electrostatic Born-Infeld equation with extended charges. Commun. Math. Phys. 2016, 346, 877–906. [Google Scholar] [CrossRef]
- Charkaoui, A.; Ben-Loghfyry, A.; Zeng, S. A novel parabolic model driven by double phase flux operator with variable exponents: Application to image decomposition and denoising. Comput. Math. Appl. 2024, 174, 97–141. [Google Scholar] [CrossRef]
- Charkaoui, A.; Ben-Loghfyry, A.; Zeng, S. Nonlinear Parabolic Double Phase Variable Exponent Systems with Applications in Image Noise Removal. Appl. Math. Model. 2024, 132, 495–530. [Google Scholar] [CrossRef]
- Harjulehto, P.; Hästö, P. Double phase image restoration. J. Math. Anal. Appl. 2021, 501, 123832. [Google Scholar] [CrossRef]
- Cherfils, L.; Il’yasov, Y. On the stationary solutions of generalizedreaction diffusion equations with p & q-Laplacian. Commun. Pure Appl. Anal. 2005, 4, 9–22. [Google Scholar]
- He, J.H.; Anjum, N.; He, C.H.; Alsolami, A.A. Beyond Laplace and Fourier transforms: Challenges and future prospects. Therm. Sci. 2023, 27 Pt B, 5075–5089. [Google Scholar] [CrossRef]
- Borowski, M.; Chlebicka, I.; Filippis, F.D.; Miasojedow, B. Absence and presence of Lavrentiev’s phenomenon for double phase functionals upon every choice of exponents. Calc. Var. Partial Differ. Equations 2024, 63, 35. [Google Scholar] [CrossRef]
- De Filippis, C.; Mingione, G. On the regularity of minima of non-autonomous functionals. J. Geom. Anal. 2020, 30, 1584–1626. [Google Scholar] [CrossRef]
- Zhikov, V.V. On Lavrentiev’s phenomenon. Russian J. Math. Phys. 1995, 3, 249–269. [Google Scholar]
- Bai, Y.; Papageorgiou, N.S.; Zeng, S. Parametric singular double phase Dirichlet problems. Adv. Nonlinear Anal. 2023, 12, 20230122. [Google Scholar] [CrossRef]
- D’Aguì, G.; Sciammetta, A.; Tornatore, E.; Winkert, P. Parametric Robin double phase problems with critical growth on the boundary. Discrete Contin. Dyn. Syst. Ser. S 2023, 16, 1286–1299. [Google Scholar] [CrossRef]
- Gambera, L.; Guarnotta, U.; Papageorgiou, N.S. Continuous spectrum for a double-phase unbalanced growth eigenvalue problem. Mediterr. J. Math. 2024, 21, 124. [Google Scholar] [CrossRef]
- Gasiński, L.; Papageorgiou, N.S. Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 2021, 14, 613–626. [Google Scholar] [CrossRef]
- Gasiński, L.; Papageorgiou, N.S. Double phase logistic equations with superdiffusive reaction. Nonlinear Anal. Real World Appl. 2023, 70, 103782. [Google Scholar] [CrossRef]
- Gasiński, L.; Winkert, P. Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal. 2020, 195, 111739. [Google Scholar] [CrossRef]
- Gasiński, L.; Winkert, P. Existence and uniqueness results for double phase problems with convection term. J. Differ. Equations 2020, 268, 4183–4193. [Google Scholar] [CrossRef]
- Gasiński, L.; Winkert, P. Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equations 2021, 274, 1037–1066. [Google Scholar] [CrossRef]
- Guarnotta, U.; Livrea, R.; Winkert, P. The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 2023, 34, 617–639. [Google Scholar] [CrossRef]
- Marino, G.; Winkert, P. Moser iteration applied to elliptic equations with critical growth on the boundary. Nonlinear Anal. 2019, 180, 154–169. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Vetro, C.; Vetro, F. Multiple solutions for parametric double phase Dirichlet problems. Commun. Contemp. Math. 2021, 23, 2050006. [Google Scholar] [CrossRef]
- Sciammetta, A.; Tornatore, E.; Winkert, P. Bounded weak solutions to superlinear Dirichlet double phase problems. Anal. Math. Phys. 2023, 13, 23. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equations 2018, 57, 62. [Google Scholar] [CrossRef]
- Colombo, M.; Mingione, G. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 2015, 215, 443–496. [Google Scholar] [CrossRef]
- Ho, K.; Winkert, P. New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems. Calc. Var. Partial Differ. Equations 2023, 62, 227. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity of minimizers for double phase functionals of borderline case with variable exponents. Adv. Nonlinear Anal. 2024, 13, 20240017. [Google Scholar] [CrossRef]
- Mingione, G.; Rădulescu, V.D. Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 2021, 501, 125197. [Google Scholar] [CrossRef]
- Papageorgiou, N.S. Double phase problems: A survey of some recent results. Opuscula Math. 2022, 42, 257–278. [Google Scholar] [CrossRef]
- Candito, P.; Gasiński, L.; Livrea, R. Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero. J. Math. Anal. Appl. 2019, 480, 123398. [Google Scholar] [CrossRef]
- Carvalho, M.L.; Goncalves, J.V.; Silva, E.D.; Santos, C.A.P. A type of Brézis-Oswald problem to the Φ-Laplacian operator with very singular term. Milan J. Math. 2018, 86, 53–80. [Google Scholar] [CrossRef]
- Fragnelli, G.; Mugnai, D.; Papageorgiou, N.S. The Brezis-Oswald result for quasilinear Robin problems. Adv. Nonlinear Stud. 2016, 16, 603–622. [Google Scholar] [CrossRef]
- Gambera, L.; Guarnotta, U. Strongly singular convective elliptic equations in RN driven by a non-homogeneous operator. Commun. Pure Appl. Anal. 2022, 21, 3031–3054. [Google Scholar] [CrossRef]
- Guarnotta, U.; Marano, S.A.; Motreanu, D. On a singular Robin problem with convection terms. Adv. Nonlinear Stud. 2020, 20, 895–909. [Google Scholar] [CrossRef]
- Öztürk, E.; Papageorgiou, N.S. Nonhomogeneous singular problems with convection. J. Fixed Point Theory Appl. 2024, 26, 62. [Google Scholar] [CrossRef]
- Tan, Z.; Fang, F. Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 2013, 402, 348–370. [Google Scholar] [CrossRef]
- Bai, Y.; Gasiński, L.; Papageorgiou, N.S. Singular double phase equations with a sign changing reaction. Commun. Nonlinear Sci. Numer. Simul. 2025, 142, 108566. [Google Scholar] [CrossRef]
- Failla, G.; Gasiński, L.; Papageorgiou, N.S.; Skupień, M. Existence and uniqueness of solutions for singular double phase equations. Appl. Anal. 2025, submitted.
- Anjum, N.; He, J.H. Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly. Int. J. Mod. Phys. B 2020, 34, 2050313. [Google Scholar] [CrossRef]
- Callegari, A.; Nachman, A. Some singular, nonlinear differential equations arising in boundary layer theory. J. Math. Anal. Appl. 1978, 64, 96–105. [Google Scholar] [CrossRef]
- Callegari, A.; Nachman, A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 1980, 38, 275–281. [Google Scholar]
- Carleman, T. Problèmes Mathématiques Dans la Théorie Cinétique des Gaz; Almqvist & Wiksells Boktryckeri Ab: Uppsala, Sweden, 1957. [Google Scholar]
- Cohen, H.B.; Keller, D.S. Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 1967, 16, 1361–1376. [Google Scholar]
- El-Dib, Y.O. Insightful and comprehensive formularization of frequency–amplitude formula for strong or singular nonlinear oscillators. J. Low Freq. Noise Vib. Act. Control 2023, 42, 89–109. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. Variational principle for singular waves. Chaos Solitons Fractals 2023, 172, 113566. [Google Scholar] [CrossRef]
- Nowosad, P. On the integral equation κf = 1f arising in a problem in communication. J. Math. Anal. Appl. 1966, 14, 484–492. [Google Scholar] [CrossRef]
- Gierer, A.; Meinhardt, H. A theory of biological pattern formation. Kybernetik 1972, 12, 30–39. [Google Scholar] [CrossRef]
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 1952, 237, 37–72. [Google Scholar]
- Candito, P.; Failla, G.; Livrea, R. Positive solutions for a p-Laplacian equation with sub-critical singular parametric reaction term. Z. Anal. Anwend. 2025, 44, 145–164. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Positive solutions for nonlinear parametric singular Dirichlet problems. Bull. Math. Sci. 2018, 9, 1950011. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Rădulescu, V.D.; Yuan, S. Nonautonomous double-phase equations with strong singularity and concave perturbation. Bull. Lond. Math. Soc. 2024, 56, 1245–1262. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Rădulescu, V.D.; Zhang, Y. Strongly singular double phase problems. Mediterr. J. Math. 2022, 19, 82. [Google Scholar] [CrossRef]
- Guarnotta, U.; Livrea, R.; Marano, S.A. Some recent results on singular p-Laplacian equations. Demonstr. Math. 2022, 55, 416–428. [Google Scholar] [CrossRef]
- Lieberman, G.M. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 1988, 12, 1203–1219. [Google Scholar] [CrossRef]
- Pucci, P.; Serrin, J. The Maximum Principle; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
- Guedda, M.; Véron, L. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 1989, 13, 879–902. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2003; Volume 140. [Google Scholar]
- Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
- Harjulehto, P.; Hästö, P. Orlicz Spaces and Generalized Orlicz Spaces; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P. A new class of double phase variable exponent problems: Existence and uniqueness. J. Differ. Equations 2022, 323, 182–228. [Google Scholar] [CrossRef]
- Hu, S.; Papageorgiou, N.S. Research Topics in Analysis, Vol. II; Birkhäuser/Springer: Cham, Switzerland, 2024. [Google Scholar]
- Papageorgiou, N.S.; Winkert, P. Applied Nonlinear Functional Analysis; De Gruyter: Berlin, Germany, 2024. [Google Scholar]
- Papageorgiou, N.S.; Peng, Z. Singular double phase problems with convection. Nonlinear Anal. Real World Appl. 2025, 81, 104213. [Google Scholar] [CrossRef]
- Gasiński, L.; Papageorgiou, N.S. Exercises in Analysis. Part 2. Nonlinear Analysis; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Hewitt, E.; Stromberg, K. Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable; Second printing; Springer: New York, NY, USA; Berlin, Germany, 1969. [Google Scholar]
- Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; Academic Press, Inc.: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Gasiński, L.; Papageorgiou, N.S. Nonlinear Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Motreanu, D.; Motreanu, V.V.; Papageorgiou, N.S. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems; Springer: New York, NY, USA, 2014. [Google Scholar]
- Díaz, J.I.; Saá, J.E. Existence et unicité de solutions positives pour certaines equations elliptiques quasilineaires. CR Acad. Sci. ParisSér. I 1987, 305, 521–524. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Research Topics in Analysis, Vol. I; Birkhäuser/Springer: Cham, Switzerland, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Failla, G.; Gasiński, L.; Petiurenko, A. Existence and Uniqueness of Positive Solutions for Singular Asymmetric Multi-Phase Equations. Symmetry 2025, 17, 573. https://doi.org/10.3390/sym17040573
Failla G, Gasiński L, Petiurenko A. Existence and Uniqueness of Positive Solutions for Singular Asymmetric Multi-Phase Equations. Symmetry. 2025; 17(4):573. https://doi.org/10.3390/sym17040573
Chicago/Turabian StyleFailla, Giuseppe, Leszek Gasiński, and Anna Petiurenko. 2025. "Existence and Uniqueness of Positive Solutions for Singular Asymmetric Multi-Phase Equations" Symmetry 17, no. 4: 573. https://doi.org/10.3390/sym17040573
APA StyleFailla, G., Gasiński, L., & Petiurenko, A. (2025). Existence and Uniqueness of Positive Solutions for Singular Asymmetric Multi-Phase Equations. Symmetry, 17(4), 573. https://doi.org/10.3390/sym17040573