Classes of Harmonic Functions Defined by the Carlson–Shaffer Operator
Abstract
:1. Introduction
2. Coefficients Criteria
3. Dispersion Theorems
4. The Radii of Starlikeness and Convexity
5. Convexity and Extreme Points
6. Conclusions and Declarations
Funding
Data Availability Statement
Conflicts of Interest
References
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. RACSAM 2019, 113, 1315–1329. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K. Starlikeness of harmonic functions defined by Ruscheweyh derivatives. J. Indian Acad. Math. 2004, 26, 191–200. [Google Scholar]
- Li, S.; Ma, L.; Tang, H.; Ao, E. Some properties for a new generalized subclass of close-to-convex harmonic functions. J. Math. Res. Appl. 2024, 44, 769–781. [Google Scholar]
- Mishra, O.; Çetinkaya, A.; Sokól, J. Harmonic close-to-convex mappings associated with Sălăgean q-differential operator. Stud. Univ. Babeş-Bolyai Math. 2025, 70, 33–49. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. On certain classes of harmonic functions involving Ruscheweyh derivatives. Bull. Calcutta Math. Soc. 2004, 96, 99–108. [Google Scholar]
- Seoudy, T.M. Classes of p-valent harmonic functions defined by q-derivative operator. Afr. Mat. 2023, 34, 91. [Google Scholar]
- Shi, J.; Wang, Z.; Wang, X. Properties and characteristics of certain subclass of close-to-convex harmonic mappings. J. Math. Res. Appl. 2024, 44, 648–658. [Google Scholar]
- Yalçın, S.; Joshi, S.B.; Yaşar, E. On certain subclass of harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator. Appl. Math. Sci. 2010, 4, 327–336. [Google Scholar]
- Carlson, D.C.; Shaffer, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Dziok, J.; Trojnar-Spelina, L. On a class of functions with negative coefficients. J. Math. Appl. 2006, 28, 41–48. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Livingston, A.E. On the radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 1966, 17, 352–357. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems. I Kyungpook Math. 1978, 18, 53–59. [Google Scholar]
- Srivastava, H.M.; Owa, S. Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions. Nagoya Math. J. 1987, 106, 1–28. [Google Scholar] [CrossRef]
- Choquet, G. Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 1945, 89, 156–165. [Google Scholar]
- Kneser, H. Losung der Aufgabe 41. Jahresber. Dtsch. Math.-Ver. 1926, 36, 123–124. [Google Scholar]
- Rado, T. Aufgabe 41. Jahresber. Dtsch. Math.-Ver. 1926, 49, 35. [Google Scholar]
- Clunie, J.; Sheil Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Mauir, S. Weak subordination for convex univalent harmonic functions. J. Math. Anal. Appl. 2008, 348, 862–871. [Google Scholar]
- Dziok, J.; Darus, M.; Sokół, J.; Bulboaca, T. Generalizations of starlike harmonic functions. C. R. Math. Acad. Sci. Paris 2016, 354, 13–18. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
- Silverman, H. Harmonic univalent functions with negative coefficients. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar]
- Ahuja, O.P.; Jahangiri, J.M. Certain multipliers of univalent harmonic functions. Appl. Math. Lett. 2005, 18, 1319–1324. [Google Scholar] [CrossRef]
- Al-Kharsani, H.A.; Al-Khal, R.A. Univalent harmonic functions. J. Inequal. Pure Appl. Math. 2007, 8, 59. [Google Scholar]
- Aouf, M.K.; Srivastava, H.M. Some families of starlike functions with negative coefficients. J. Math. Anal. Appl. 1996, 203, 762–790. [Google Scholar]
- Darus, M.; Al-Shaqsi, K.K. On certain subclass of harmonic univalent functions. J. Anal. Appl. 2008, 6, 17–28. [Google Scholar]
- Karpuzoullari, S.Y.; Öztürk, M.; Yamankaradeniz, M. A subclass of harmonic univalent functions with negative coefficients. Appl. Math. Comput. 2003, 142, 469–476. [Google Scholar]
- Srivastava, H.M.; Aouf, M.K. A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients II. J. Math. Anal. Appl. 1995, 192, 673–688. [Google Scholar]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziok, J. Classes of Harmonic Functions Defined by the Carlson–Shaffer Operator. Symmetry 2025, 17, 558. https://doi.org/10.3390/sym17040558
Dziok J. Classes of Harmonic Functions Defined by the Carlson–Shaffer Operator. Symmetry. 2025; 17(4):558. https://doi.org/10.3390/sym17040558
Chicago/Turabian StyleDziok, Jacek. 2025. "Classes of Harmonic Functions Defined by the Carlson–Shaffer Operator" Symmetry 17, no. 4: 558. https://doi.org/10.3390/sym17040558
APA StyleDziok, J. (2025). Classes of Harmonic Functions Defined by the Carlson–Shaffer Operator. Symmetry, 17(4), 558. https://doi.org/10.3390/sym17040558