MADC-Net: Densely Connected Network with Multi-Attention for Metal Surface Defect Segmentation
Abstract
:1. Introduction
- (1)
- We employ a densely connected encoder–decoder architecture to significantly enhance the network’s feature extraction capability. This structure facilitates the efficient flow of information between layers by establishing direct connections, and it ensures that the characteristics of both the lower and upper layers are effectively utilized.
- (2)
- We designed a multi-attention module that takes full advantage of a CESConv module, an efficient channel attention module, and a simple attention module. By combining these attention mechanisms, the proposed module effectively enhances feature discrimination, leading to improved accuracy and robustness in defect detection tasks.
- (3)
- We introduce a reconfigurable efficient attention module to optimize computational efficiency while improving the detection of intricate defect structures. This module dynamically adjusts its attention mechanisms based on input variations, ensuring that computational resources are allocated effectively without unnecessary redundancy.
2. Materials and Methods
2.1. Overall Architecture of MADC-Net
2.2. CESConv Module
2.2.1. Channel Reconstruction Unit
2.2.2. Efficient Multi-Scale Attention Module
2.2.3. Spatial Reconstruction Unit
2.3. Multi-Attention Module
2.3.1. Efficient Channel Attention Module
2.3.2. gnConv Module
2.3.3. SimAM
2.4. Reconfigurable Efficient Attention Module
2.5. Loss Function
3. Results
3.1. Dataset
3.2. Evaluation Metrics
3.3. Implementation Details
3.4. Ablation Experiments
3.5. Comparison Experiments
3.6. Computational Efficiency
3.7. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Qin, Y.; Lin, Z.; Xia, H.; Wang, C. Detection of scratch defects on metal surfaces based on MSDD-UNet. Electronics 2024, 13, 3241. [Google Scholar] [CrossRef]
- García Peña, D.; García Pérez, D.; Díaz Blanco, I.; Juárez, J.M. Exploring deep fully convolutional neural networks for surface defect detection in complex geometries. Int. J. Adv. Manuf. Tech. 2024, 134, 97–111. [Google Scholar]
- Zhang, Z.; Wang, W.; Tian, X.; Tan, J. Data-driven semantic segmentation method for detecting metal surface defects. IEEE Sens. J. 2024, 24, 15676–15689. [Google Scholar]
- Song, K.; Feng, H.; Cao, T.; Cui, W.; Yan, Y. MFANet: Multifeature aggregation network for cross-granularity few-shot seamless steel tubes surface defect segmentation. IEEE Trans. Ind. Inform. 2024, 20, 9725–9735. [Google Scholar]
- Bakirci, M. Vehicular mobility monitoring using remote sensing and deep learning on a UAV-based mobile computing platform. Measurement 2025, 244, 116579. [Google Scholar]
- Yu, R.; Guo, B. Dynamic reasoning network for image-level supervised segmentation on metal surface defect. IEEE Trans. Instrum. Meas. 2024, 73, 5018010. [Google Scholar]
- Zhu, W.; Liang, R.; Yang, J.; Cao, Y.; Fu, G.; Cao, Y. A sub-region Unet for weak defects segmentation with global information and mask-aware loss. Eng. Appl. Artif. Intel. 2023, 122, 106011. [Google Scholar]
- Zhang, Z.; Wang, W.; Tian, X. Semantic segmentation of metal surface defects and corresponding strategies. IEEE Trans. Instrum. Meas. 2023, 72, 5016813. [Google Scholar]
- Niu, S.; Li, B.; Wang, X.; Peng, Y. Region-and strength-controllable GAN for defect generation and segmentation in industrial images. IEEE Trans. Ind. Inform. 2022, 18, 4531–4541. [Google Scholar] [CrossRef]
- Ma, P.; Wang, G.; Li, T.; Zhao, H.; Li, Y.; Wang, H. STCS-Net: A medical image segmentation network that fully utilizes multi-scale information. Biomed. Opt. Express 2024, 15, 2811–2831. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wu, H.; Liu, X.; Zhai, X.; Sun, K.; Tian, C.; Zhao, H.; Li, T.; Jia, W.; et al. Mfcanet: A road scene segmentation network based on multi-scale feature fusion and context information aggregation. J. Vis. Commun. Image R. 2024, 98, 104055. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.; Chen, M.; Yu, J.; Cheng, Y. TransGraphNet: A novel network for medical image segmentation based on transformer and graph convolution. Biomed. Signal Proces. 2025, 104, 107510. [Google Scholar] [CrossRef]
- Patil, S.S.; Ramteke, M.; Rathore, A.S. Permutation Invariant self-attention infused U-shaped transformer for medical image segmentation. Neurocomputing 2025, 625, 129577. [Google Scholar] [CrossRef]
- Liu, M.; Liu, P.; Zhao, L.; Ma, Y.; Chen, L.; Xu, M. Fast semantic segmentation for remote sensing images with an improved short-term dense-connection (STDC) network. Int. J. Digit. Earth 2024, 17, 2356122. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Qiu, H.; Wang, T.; Li, X.; Zhu, S.; Huang, M.; Zhuang, J.; Shi, Y.; Xu, X. Constrained multi-scale dense connections for biomedical image segmentation. Pattern Recogn. 2025, 158, 111031. [Google Scholar] [CrossRef]
- Dong, S.; Cao, J.; Wang, Y.; Ma, J.; Kuang, Z.; Zhang, Z. Lightweight multi-scale encoder-decoder network with locally enhanced attention mechanism for concrete crack segmentation. Meas. Sci. Technol. 2025, 36, 025021. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, J.; Yin, J.; Yang, Z. CFFANet: Category feature fusion and attention mechanism network for retinal vessel segmentation. Multimed. Syst. 2024, 30, 332. [Google Scholar] [CrossRef]
- Ning, G.; Liu, P.; Dai, C.; Sun, M.; Zhou, Q.; Li, Q. RGAM: A refined global attention mechanism for medical image segmentation. IET Comput. Vis. 2024, 18, 1362–1375. [Google Scholar] [CrossRef]
- Wang, X.; Cao, W. MRFDCNet: Multireceptive field dense connection network for real-time semantic segmentation. Mob. Inf. Syst. 2022, 2022, 6100292. [Google Scholar] [CrossRef]
- Garbaz, A.; Oukdach, Y.; Charfi, S.; El Ansari, M.; Koutti, L.; Salihoun, M.; Lafraxo, S. MLFE-UNet: Multi-level feature extraction transformer-based UNet for gastrointestinal disease segmentation. Int. J. Imag. Syst. Tech. 2025, 35, e70030. [Google Scholar] [CrossRef]
- Tan, D.; Yao, Z.; Peng, X.; Ma, H.; Dai, Y.; Su, Y.; Zhong, W. Multi-level medical image segmentation network based on multi-scale and context information fusion strategy. IEEE Trans. Em. Top. Comput. Intell. 2024, 8, 474–487. [Google Scholar]
- Li, J.; Wen, Y.; He, L. Scconv: Spatial and channel reconstruction convolution for feature redundancy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 6153–6162. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar]
- Rao, Y.; Zhao, W.; Tang, Y.; Zhou, J.; Lim, S.N.; Lu, J. Hornet: Efficient high-order spatial interactions with recursive gated convolutions. Adv. Neural Inf. Process. Syst. 2022, 35, 10353–10366. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4003–4012. [Google Scholar]
- Luo, H.; Zhou, D.M.; Cheng, Y.J.; Wang, S.Q. MPEDA-Net: A lightweight brain tumor segmentation network using multi-perspective extraction and dense attention. Biomed. Signal Process. Control 2024, 91, 106054. [Google Scholar]
- Yuan, H.J.; Chen, L.N.; He, X.F. MMUNet: Morphological feature enhancement network for colon cancer segmentation in pathological images. Biomed. Signal Process. Control 2024, 91, 105927. [Google Scholar]
- SD-Saliency-900 Dataset. Available online: https://gitee.com/dengzhiguang/EDRNet (accessed on 20 November 2024).
- Bearing Dateset. Available online: https://m.tb.cn/h.TXXh4Hf?tk=ls6p3Gamn1C (accessed on 20 November 2024).
- Selvaraj, A.; Nithiyaraj, E. CEDRNN: A convolutional encoder-decoder residual neural network for liver tumour segmentation. Neural Process. Lett. 2023, 55, 1605–1624. [Google Scholar]
- Li, Y.; Zhang, Y.; Liu, J.Y.; Wang, K.; Zhang, K.; Zhang, G.S.; Liao, X.F.; Yang, G. Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation. IEEE Trans. Cybern. 2022, 53, 5826–5839. [Google Scholar]
- Yang, M.Y.; Shen, Q.L.; Xu, D.T.; Sun, X.L.; Wu, Q.B. Striped WriNet: Automatic wrinkle segmentation based on striped attention module. Biomed. Signal Proces. 2024, 90, 105817. [Google Scholar]
- Yang, C.; Li, B.; Xiao, Q.; Bai, Y.; Li, Y.; Li, Z.; Li, H.; Li, H. LA-Net: Layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images. Phys. Med. Biol. 2024, 69, 045019. [Google Scholar]
- Kou, R.; Wang, C.; Yu, Y.; Peng, Z.; Yang, M.; Huang, F.; Fu, Q. LW-IRSTNet: Lightweight infrared small target segmentation network and application deployment. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5621313. [Google Scholar]
- Han, X.; Liu, Y.; Liu, G.; Lin, Y.; Liu, Q. LOANet: A lightweight network using object attention for extracting buildings and roads from UAV aerial remote sensing images. PeerJ Comput. Sci. 2023, 9, e1467. [Google Scholar]
- Zhang, X.; Zhao, Z.; Ran, L.; Xing, Y.; Wang, W.; Lan, Z.; Yin, H.; Hee, H.; Liud, Q.; Zhang, B.; et al. FastICENet: A real-time and accurate semantic segmentation model for aerial remote sensing river ice image. Signal Process. 2023, 212, 109150. [Google Scholar] [CrossRef]
- Ji, G.P.; Fan, D.P.; Chou, Y.C.; Dai, D.; Liniger, A.; Van Gool, L. Deep gradient learning for efficient camouflaged object detection. Mach. Intell. Res. 2023, 20, 92–108. [Google Scholar] [CrossRef]
- Tang, F.; Ding, J.; Quan, Q.; Wang, L.; Ning, C.; Zhou, S.K. CMUNeXt: An efficient medical image segmentation network based on large kernel and skip fusion. In Proceedings of the 2024 IEEE International Symposium on Biomedical Imaging, Athens, Greece, 27–30 May 2024; pp. 1–5. [Google Scholar]
- Cong, R.; Yang, H.; Jiang, Q.; Gao, W.; Li, H.; Wang, C.; Zhao, Y.; Kwong, S. BCS-Net: Boundary, context, and semantic for automatic COVID-19 lung infection segmentation from CT images. IEEE Trans. Instrum. Meas. 2022, 71, 5019011. [Google Scholar] [CrossRef]
- Chen, B.; Niu, T.; Yu, W.; Zhang, R.; Wang, Z.; Li, B. A-net: An a-shape lightweight neural network for real-time surface defect segmentation. IEEE Trans. Instrum. Meas. 2023, 73, 5001314. [Google Scholar] [CrossRef]
Loss Function | Dice | Jaccard |
---|---|---|
Dice | 0.8882 | 0.7996 |
) | 0.7582 | 0.6138 |
) | 0.8617 | 0.7578 |
IoU | 0.8289 | 0.7091 |
FocalTversky | 0.8457 | 0.7341 |
Method | Dice | Jaccard | Params (M) | FPS | GFLOPs |
---|---|---|---|---|---|
Baseline | 0.8765 | 0.7810 | 0.3659 | 80.0056 | 1.0105 |
Baseline + CESConv | 0.8795 | 0.7855 | 0.4778 | 60.1794 | 1.1527 |
Baseline + REAM | 0.8804 | 0.7872 | 0.4376 | 66.4669 | 1.3653 |
Baseline + CESConv + REAM | 0.8882 | 0.7996 | 0.5496 | 52.3901 | 1.5075 |
Method | Dice | Jaccard |
---|---|---|
LW-IRSTNet [36] | 0.8838 | 0.7924 |
LOANet [37] | 0.8735 | 0.7761 |
FastICENet [38] | 0.8737 | 0.7766 |
DGNet [39] | 0.8748 | 0.7780 |
CMUNeXt [40] | 0.8831 | 0.7913 |
BCS-Net [41] | 0.8658 | 0.7645 |
A-Net [42] | 0.8792 | 0.7851 |
MADC-Net | 0.8882 | 0.7996 |
Method | Dice | Jaccard |
---|---|---|
LW-IRSTNet [36] | 0.7510 | 0.6084 |
LOANet [37] | 0.7805 | 0.6449 |
FastICENet [38] | 0.7584 | 0.6166 |
DGNet [39] | 0.7595 | 0.6183 |
CMUNeXt [40] | 0.7729 | 0.6359 |
BCS-Net [41] | 0.7541 | 0.6114 |
A-Net [42] | 0.7523 | 0.6089 |
MADC-Net | 0.7824 | 0.6474 |
Method | Params (M) | FPS | GFLOPs |
---|---|---|---|
LW-IRSTNet [36] | 0.1612 | 70.38 | 0.3014 |
LOANet [37] | 1.3873 | 73.45 | 1.3876 |
FastICENet [38] | 0.9644 | 163.98 | 0.5632 |
DGNet [39] | 0.5712 | 49.39 | 0.6628 |
CMUNeXt [40] | 3.1492 | 146.41 | 7.4177 |
BCS-Net [41] | 44.8226 | 12.40 | 14.8458 |
A-Net [42] | 0.3898 | 58.89 | 0.6089 |
MADC-Net | 0.5496 | 52.39 | 1.5075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Jiang, X.; Wang, S. MADC-Net: Densely Connected Network with Multi-Attention for Metal Surface Defect Segmentation. Symmetry 2025, 17, 518. https://doi.org/10.3390/sym17040518
Ding X, Jiang X, Wang S. MADC-Net: Densely Connected Network with Multi-Attention for Metal Surface Defect Segmentation. Symmetry. 2025; 17(4):518. https://doi.org/10.3390/sym17040518
Chicago/Turabian StyleDing, Xiaokang, Xiaoliang Jiang, and Sheng Wang. 2025. "MADC-Net: Densely Connected Network with Multi-Attention for Metal Surface Defect Segmentation" Symmetry 17, no. 4: 518. https://doi.org/10.3390/sym17040518
APA StyleDing, X., Jiang, X., & Wang, S. (2025). MADC-Net: Densely Connected Network with Multi-Attention for Metal Surface Defect Segmentation. Symmetry, 17(4), 518. https://doi.org/10.3390/sym17040518