Tradeoff Relations Between Intrinsic Concurrence and First-Order Coherence of Two-Qubit Cavity System: Qubit–Dipole Coupling and Decoherence Effects
Abstract
:1. Introduction
2. The Physical Model and Its Solution
3. Quantifiers of Tradeoff Relations of Quantum Information Resource
- Intrinsic ConcurrenceThe behaviors of the entanglement between the generated two spin qubit states are explored using the concurrence [35], provided byThe initial pure two-spin qubit state has , growing to a maximal state if and to a partially two-spin qubit state if . With the intrinsic concurrence [5] defined as above, for a two-qubit state , the intrinsic concurrence is defined asFor a pure two-qubit state, the concurrence and intrinsic concurrence have the following dynamics. Due to [5], where are the eigenvalues of the the non-Hermitian matrix , the two-qubit concurrence is the lower bound of the intrinsic concurrence. This means that the dynamics of the two-spin Heisenberg qubit concurrence and the intrinsic concurrence allows the following inequality:
- First-Order Coherence (FOC)The first-order coherence can be used to measure the generated coherence of a spin k-qubit state with the reduced density matrix , where and . The FOC of a k-qubit state is defined asHence, considering all k-qubits independently, the first-order coherence measure of the whole two-qubit system can be provided by [36]
- For a general two-qubit state such as , the complementary relation between the intrinsic concurrence and first-order coherence is introduced as follows:This means that for a closed two-qubit system there is a mutual transformation relationship between its first-order and intrinsic concurrence, while for an open two-qubit system the tradeoff relations between the two-qubit nonlocal correlation and the first-order coherence depends on the purity degree of the whole two-qubit system, which is measured by the whole linear entropy equaling to .
4. Two-Spin Heisenberg XYZ-Qubits Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hu, M.-L.; Hu, X.Y.; Wang, J.C.; Peng, Y.; Zhang, Y.-R.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762–764, 1–100. [Google Scholar] [CrossRef]
- Dong, D.-D.; Song, X.-K.; Fan, X.-G.; Ye, L.; Wang, D. Complementary relations of entanglement, coherence, steering, and Bell nonlocality inequality violation in three-qubit states. Phys. Rev. A 2023, 107, 052403. [Google Scholar] [CrossRef]
- Dong, D.-D.; Wei, G.-B.; Song, X.-K.; Wang, D.; Ye, L. Unification of coherence and quantum correlations in tripartite systems. Phys. Rev. A 2022, 106, 042415. [Google Scholar] [CrossRef]
- Fan, X.-G.; Sun, W.-Y.; Ding, Z.-Y.; Ming, F.; Yang, H.; Wang, D.; Ye, L. Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New J. Phys. 2019, 21, 093053. [Google Scholar] [CrossRef]
- Zhou, A.-L.; Wang, D.; Fan, X.-G.; Ming, F.; Ye, L. Mutual restriction between concurrence and intrinsic concurrence for arbitrary two-qubit states. Chin. Phys. Lett. 2020, 37, 110302. [Google Scholar] [CrossRef]
- Meier, F.; Levy, J.; Loss, D. Quantum computing with spin cluster qubits. Phys. Rev. Lett. 2003, 90, 047901. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Wei, T.-C. Simulating largesize quantum spin chains on cloud-based superconducting quantum computers. Phys. Rev. Res. 2023, 5, 013183. [Google Scholar] [CrossRef]
- Boixo, S.; Rnnow, T.F.; Isakov, S.V.; Wang, Z.; Wecker, D.; Lidar, D.A.; Martinis, J.M.; Troyer, M. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 2014, 10, 218–224. [Google Scholar] [CrossRef]
- Harris, R.; Sato, Y.; Berkley, A.J.; Reis, M.; Altomare, F.; Amin, M.; Boothby, K.; Bunyk, P.; Deng, C.; Enderud, C.; et al. Phase transitions in a programmable quantum spin glass simulator. Science 2018, 361, 162–165. [Google Scholar] [CrossRef]
- Labuhn, H.; Barredo, D.; Ravets, S.; De Leseleuc, D.; Macri, T.; Lahaye, T.; Browaeys, A. Tunable two dimensional arrays of single Rydberg atoms for realizing quantum ising models. Nature 2016, 534, 667–670. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Keever, C.M.; Coopmans, L.; Lubasch, M.; Benedetti, M. Realization of quantum signal processing on a noisy quantum computer. npj Quantum Inf. 2023, 9, 93. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Rmili, H.; Omri, M.; Abdel-Aty, A.H. Two-qubit quantum nonlocality dynamics induced by interacting of two coupled superconducting flux qubits with a resonator under intrinsic decoherence. Alex. Eng. J. 2023, 77, 239–246. [Google Scholar] [CrossRef]
- Xu, K.; Wang, S.S.J.; Turner, J.S.E.F.; Kjaergaard, M.; Hartmann, J.I.A.M.H.; Gambetta, J.M. Controlled Environment for Superconducting Qubits and Implementation of Quantum Logic Gates. Phys. Rev. Lett. 2022, 128, 150501. [Google Scholar] [CrossRef]
- Kuzmak, A. Entanglement of the isingheisenberg diamond spin-cluster in evolution. J. Phys. A Math. Theor. 2023, 56, 165302. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, G.; Yi, S.; Xu, H.; Zhou, Q.; Fang, M. Relationship between quantum-memoryassisted entropic uncertainty and steered quantum coherence in a two-qubit x state. Quantum Inf. Process. 2023, 22, 114. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Fang, M.; Kang, G.; Li, X. Quantum-memory-assisted entropic uncertainty in twoqubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions and effects of intrinsic decoherence. Quantum Inf. Process. 2018, 17, 326. [Google Scholar] [CrossRef]
- Yurischev, M.A. On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions. Quantum Inf. Process. 2020, 19, 336. [Google Scholar] [CrossRef]
- Park, D. Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii Moriya interactions. Quantum Inf. Process. 2019, 18, 172. [Google Scholar] [CrossRef]
- Aldosari, F.M.; Alsahli, A.M.; Mohamed, A.-B.A.; Rahman, A.U. Control of quantum-memory induced by generated thermal XYZ-Heisenberg entanglement: y-component DM interaction. Ann. Phys. 2023, 535, 2300094. [Google Scholar] [CrossRef]
- Yurischev, M.A.; Haddadi, S. Local quantum Fisher information and local quantum uncertainty for general X states. Phys. Lett. A 2023, 476, 128868. [Google Scholar] [CrossRef]
- Benabdallah, F.; El Anouz, K.; Rahman, A.U.; Daoud, M.; El Allati, A.; Haddadi, S. Witnessing quantum correlations in a hybrid qubit-qutrit system under intrinsic decoherence. Fortschritte Phys. 2023, 71, 2300032. [Google Scholar] [CrossRef]
- Zidan, N.; Rahman, A.U.; Haddadi, S.; Czerwinski, A.; Haseli, S. Local quantum uncertainty and quantum interferometric power in an anisotropic two-qubit system. Universe 2023, 9, 5. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Khedr, A.N.; Haddadi, S.; Rahman, A.U.; Tammam, M.; Pourkarimi, M.R. Intrinsic decoherence effects on nonclassical correlations in a symmetric spin orbit model. Results Phys. 2022, 39, 105693. [Google Scholar] [CrossRef]
- Hashem, M.; Mohamed, A.-B.A.; Haddadi, S.; Khedif, Y.; Pourkarimi, M.R.; Daoud, M. Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B 2022, 128, 87. [Google Scholar] [CrossRef]
- Tacchino, F.; Chiesa, A.; Carretta, S.; Gerace, D. Quantum computers as universal quantum simulators: State-of-the-art and perspectives. Adv. Quantum Technol. 2020, 3, 1900052. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, J.; Li, Y. Error-mitigated deepcircuit quantum simulation of open systems: Steady state and relaxation rate problems. Phys. Rev. Res. 2022, 4, 043140. [Google Scholar] [CrossRef]
- Shahbeigi, F.; Karimi, M.; Karimipour, V. Simulating of X-states and the two-qubit XYZ Heisenberg system on IBM quantum computer. Phys. Scr. 2022, 97, 025101. [Google Scholar] [CrossRef]
- Wu, Q.; Shi, Y.; Zhang, J. Qubits on programmable geometries with a trapped-ion quantum processor. arXiv 2023, arXiv:2308.10179. [Google Scholar]
- Vandersypen, L.M.; Eriksson, M.A. Quantum computing with semiconductor spins. Phys. Today 2019, 72, 38–45. [Google Scholar] [CrossRef]
- Gardiner, C.W. Quantum Noise; Springer: Berlin, Germany, 1991. [Google Scholar]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Buzek, V.; Kim, M.S.; Knight, P.L. Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 1993, 48, 3900. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-B.; Zou, X.-B. Dynamic algebraic approach to the system of a three-level atom in the Λ configuration. Phys. Rev. A 1999, 60, 4743. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Svozilík, J.; Vallés, A.; Peřina, J.; Torres, J.P. Revealing Hidden Coherence in Partially Coherent Light. Phys. Rev. Lett. 2015, 115, 220501. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, M.; Mohamed, A.-B.A.; Hessian, H.A.; Breaz, D.; Amourah, A.; El-Deeb, S.M. Tradeoff Relations Between Intrinsic Concurrence and First-Order Coherence of Two-Qubit Cavity System: Qubit–Dipole Coupling and Decoherence Effects. Symmetry 2025, 17, 400. https://doi.org/10.3390/sym17030400
Hashem M, Mohamed A-BA, Hessian HA, Breaz D, Amourah A, El-Deeb SM. Tradeoff Relations Between Intrinsic Concurrence and First-Order Coherence of Two-Qubit Cavity System: Qubit–Dipole Coupling and Decoherence Effects. Symmetry. 2025; 17(3):400. https://doi.org/10.3390/sym17030400
Chicago/Turabian StyleHashem, Mostafa, A.-B. A. Mohamed, H. A. Hessian, Daniel Breaz, Ala Amourah, and Sheza M. El-Deeb. 2025. "Tradeoff Relations Between Intrinsic Concurrence and First-Order Coherence of Two-Qubit Cavity System: Qubit–Dipole Coupling and Decoherence Effects" Symmetry 17, no. 3: 400. https://doi.org/10.3390/sym17030400
APA StyleHashem, M., Mohamed, A.-B. A., Hessian, H. A., Breaz, D., Amourah, A., & El-Deeb, S. M. (2025). Tradeoff Relations Between Intrinsic Concurrence and First-Order Coherence of Two-Qubit Cavity System: Qubit–Dipole Coupling and Decoherence Effects. Symmetry, 17(3), 400. https://doi.org/10.3390/sym17030400