Review on QCD Studies with the CMS Experiment
Abstract
:1. Introduction
2. CMS Detector
3. QCD Measurements
3.1. Soft and Semihard QCD
3.1.1. Multiplicity and Scales
3.1.2. Ridge Effect
3.2. Hard QCD
3.2.1. Multiparton Scattering and Underlying Event
3.2.2. Parton Distribution Function and Measurement
- The Z boson candidate is reconstructed from two same flavor leptons with opposite charges, requiring the invariant mass to be 71–111 GeV.
- Leading and subleading leptons have GeV and GeV, correspondingly.
- At least one b-jet with a tight b-tag discriminator requirement is selected, with 30 GeV and .
- in space is required between the direction of the lepton from Z boson decay and b-jet.
3.2.3. Parton Fragmentation
3.2.4. Multijet Production
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar]
- CMS Collaboration. Measurement of Pseudorapidity Distributions of Charged Particles in Proton-Proton Collisions at TeV. CMS-PAS-FSQ-15-008, (2015), CMS Public Note. Available online: https://cds.cern.ch/record/2145373?ln=en (accessed on 29 December 2024).
- CMS Collaboration. Pseudorapidity distribution of charged hadrons in proton-proton collisions at TeV. Phys. Lett. B 2015, 751, 143–163. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Charged-particle distributions at low transverse momentum in TeV pp interactions measured with the ATLAS detector at the LHC. Eur. Phys. J. C 2016, 76, 502. [Google Scholar] [CrossRef] [PubMed]
- ALICE Collaboration. Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at = 5.02, 7 and 13 TeV. Eur. Phys. J. C 2021, 81, 630. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at TeV. Eur. Phys. J. C 2018, 78, 697. [Google Scholar] [CrossRef]
- Nygaard, C. Charged Particle Multiplicity Distributions into Forward Pseudorapidities in pp and PbPb Collisions at the LHC. Doctoral Thesis, University of Copenhagen, Copenhagen, Danmark, 2011. [Google Scholar]
- CMS Collaboration. Charged particle transverse momentum spectra in pp collisions at 0. 9 and 7 TeV. J. High Energy Phys. 2011, 2011, 86. [Google Scholar] [CrossRef]
- CMS Collaboration. Charged particle multiplicities in pp interactions at = 0.9, 2.36 and 7 TeV. J. High Energy Phys. 2011, 2011, 79. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the energy density as a function of pseudorapidity in proton-proton collisions at 13 TeV. Eur. Phys. J. C 2019, 79, 391. [Google Scholar] [CrossRef]
- PHOBOS Collaboration. High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au +Au Collisions at 200 GeV. Phys. Rev. Lett. 2010, 104, 062301. [Google Scholar] [CrossRef]
- STAR Collaboration. Three-Particle Coincidence of the Long Range Pseudorapidity Correlation in High Energy Nucleus-Nucleus Collisions. Phys. Rev. Lett. 2010, 105, 022301. [Google Scholar] [CrossRef]
- Armesto, N.; Salgado, C.A.; Wiedemann, U.A. Measuring the Collective Flow with Jets. Phys. Rev. Lett. 2004, 93, 242301. [Google Scholar] [CrossRef] [PubMed]
- Shuryak, E.V. Origin of the “ridge” phenomenon induced by jets in heavy ion collisions. Phys. Rev. C 2007, 76, 047901. [Google Scholar] [CrossRef]
- Prasad, S.K.; Roy, V.; Chattopadhyay, S.; Chaudhuri, A.K. Elliptic flow (v2) in pp Collisions at LHC Energy: A Hydrodynamical Approach. arXiv 2009, arXiv:0910.4844. [Google Scholar]
- Bozek, P. Observation of the Collective flow in Proton-Proton Collisions. Acta Phys. Pol. B 2010, 41, 837. [Google Scholar]
- Ortona, G.; Denicol, G.S.; Mota, P.; Kodama, T. Elliptic Flow in High Multiplicity Proton-Proton Collisions at = 14 TeV as a Signature of Deconfinement and Quantum Energy Density Fluctuations. arXiv 2009, arXiv:0911.5158. [Google Scholar]
- d’Enterria, D.; Eyyubova, G.K.; Korotkikh, V.L.; Lokhtin, I.P.; Petrushanko, S.V.; Sarycheva, L.I.; Snigirev, A.M. Estimates of Hadron Azimuthal Anisotropy from Multiparton Interactions in Proton-Proton Collisions at 14 TeV. Eur. Phys. J. C 2010, 66, 173. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. J. High Energy Phys. 2010, 2010, 91. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 2013, 718, 795. [Google Scholar] [CrossRef]
- CMS Collaboration. Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV. J. High Energy Phys. 2011, 2011, 76. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of Long-Range Near-Side Two-Particle Angular Correlations in pp Collisions at = 13 TeV. Phys. Rev. Lett. 2016, 116, 172302. [Google Scholar] [CrossRef] [PubMed]
- ALICE Collaboration. Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 13 TeV. J. High Energy Phys. 2021, 2021, 290. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Observation of Long-Range Elliptic Azimuthal Anisotropies in 13 and 2.76 TeV pp Collisions with the ATLAS Detector. Phys. Rev. Lett. 2016, 116, 172301. [Google Scholar]
- ALICE Collaboration. Emergence of Long-Range Angular Correlations in Low-Multiplicity Proton-Proton Collisions. Phys. Rev. Lett. 2024, 132, 172302. [Google Scholar] [CrossRef]
- ALICE Collaboration. Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at 5.02 TeV. J. High Energy Phys. 2024, 2024, 199. [Google Scholar] [CrossRef]
- Li, W. Observation of a ’Ridge’ correlation structure in high multiplicity proton-proton collisions: A brief review. Mod. Phys. Lett. A 2012, 27, 1230018. [Google Scholar] [CrossRef]
- Venugopalan, R. The ridge through colored glass. Nucl. Phys. A 2014, 931, 277–282. [Google Scholar] [CrossRef]
- Pierog, T.; Karpenko, I.; Katzy, J.M.; Yatsenko, E.; Werner, K. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 2015, 92, 034906. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L. Collectivity without plasma in hadronic collisions. Phys. Lett. B 2018, 779, 58–63. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at 13 TeV. J. High Energy Phys. 2018, 2018, 32. [Google Scholar] [CrossRef]
- CMS Collaboration. Study of the underlying event in top quark pair production in pp collisions at 13 TeV. Eur. Phys. C 2019, 79, 123. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at 2.76 TeV. J. High Energy Phys. 2015, 2015, 137. [Google Scholar] [CrossRef]
- d’Enterria, D.; Snigirev, A.M. Triple parton scatterings in high-energy proton-proton collisions. Phys. Rev. Lett. 2017, 118, 122001. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Observation of Same-Sign WW Production from Double Parton Scattering in Proton-Proton Collisions at 13 TeV. Phys. Rev. Lett. 2023, 131, 091803. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at 13 TeV. J. High Energy Phys. 2022, 2022, 177. [Google Scholar] [CrossRef]
- CMS Collaboration. Study of Z boson plus jets events using variables sensitive to double-parton scattering in pp collisions at 13 TeV. J. High Energy Phys. 2021, 2021, 176. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of triple J/ψ meson production in proton-proton collisions at 13 TeV. Nat. Phys. 2023, 19, 338. [Google Scholar] [CrossRef]
- Abdolmaleki, H.; Amoroso, S.; Bertone, V.; Botje, M.; Britzger, D.; Camarda, S.; Cooper-Sarkar, A.; Fiaschi, J.; Giuli, F.; Glazov, A.; et al. xFitter: An Open Source QCD Analysis Framework. A resource and reference document for the Snowmass study. arXiv 2022, arXiv:2206.12465v1. [Google Scholar]
- CMS Collaboration. Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at 13 TeV. J. High Energy Phys. 2022, 02, 142. [Google Scholar]
- CMS Collaboration. Addendum to: Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at TeV. J. High Energy Phys. 2022, 12, 35. [Google Scholar]
- Ellis, J. SMEFT Constraints on New Physics beyond the Standard Model, Andromeda Proceedings, BSM 2021 online. arXiv 2021, arXiv:2105.14942. [Google Scholar]
- Kaplan, D.E.; Schwartz, M.D. Constraining Light Colored Particles with Event Shapes. Phys. Rev. Lett. 2008, 101, 022002. [Google Scholar] [CrossRef] [PubMed]
- Becciolini, D.; Gillioz, M.; Nardecchia, M.; Sannino, F.; Spannowsky, M. Constraining new colored matter from the ratio of 3 to 2 jets cross sections at the LHC. Phys. Rev. D 2015, 91, 015010. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at 13 TeV. Eur. Phys. J. C 2024, 84, 842. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of associated W + charm production in pp collisions at sqrt(s) = 7 TeV. J. High Energy Phys. 2014, 2014, 13. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at 8 TeV. Eur. Phys. J. C 2022, 82, 1094. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at 13 TeV. Eur. Phys. J. C 2024, 84, 27. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at 13 TeV. J. High Energy Phys. 2021, 2021, 109. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the production cross section for Z + b jets in proton-proton collisions at at 13 TeV. Phys. Rev. D 2022, 105, 092014. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Lönnblad, L.; Pettersson, U. Coherence effects in deep inelastic scattering. Z. Phys. C 1989, 43, 625. [Google Scholar] [CrossRef]
- Dreyer, F.A.; Salam, G.P.; Soyez, G. The Lund jet plane. J. High Energy Phys. 2018, 2018, 64. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L.; Leder, G.D.; Moretti, S.; Webber, B.R. Better jet clustering algorithms. J. High Energy Phys. 1997, 1997, 1. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the primary Lund jet plane density in proton-proton collisions at 13 TeV. J. High Energy Phys. 2024, 2024, 116. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet final states in pp collisions. Eur. Phys. J. C 2021, 81, 852. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. J. Instrum. 2017, 12, P10003. [Google Scholar] [CrossRef]
- Kodolova, O.; Vardanian, I.; Nikitenko, A.; Fano, L.; Bruno, G. Jet energy correction with charged particle tracks in CMS. Eur. Phys. J. C 2005, 40, 33–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodolova, O. Review on QCD Studies with the CMS Experiment. Symmetry 2025, 17, 260. https://doi.org/10.3390/sym17020260
Kodolova O. Review on QCD Studies with the CMS Experiment. Symmetry. 2025; 17(2):260. https://doi.org/10.3390/sym17020260
Chicago/Turabian StyleKodolova, Olga. 2025. "Review on QCD Studies with the CMS Experiment" Symmetry 17, no. 2: 260. https://doi.org/10.3390/sym17020260
APA StyleKodolova, O. (2025). Review on QCD Studies with the CMS Experiment. Symmetry, 17(2), 260. https://doi.org/10.3390/sym17020260