Asymptotics of Riemann Sums for Uniform Partitions of Intervals of Integration
Abstract
:1. Introduction
2. When
3. When ,
- (1)
- If , then
- (2)
- If , then
- (3)
- If , then
- (1)
- whenever ,
- (2)
- whenever ,
- (3)
- whenever .
- (1)
- If , then
- (2)
- If , then
- (3)
- If , then
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knuth, D. Art of Computer Programing; Addison-Wesley Professional: Reading, MA, USA, 1997; Volume 1. [Google Scholar]
- Thompson, I.; Davies, M.; Urbikain, M.K. Analysis of series and products. Part 1: The Euler-Maclaurin formula. Amer. Math. Mon. 2021, 128, 115–124. [Google Scholar] [CrossRef]
- Apostol, T.M. An elementary view of Euler’s summation formula. Amer. Math. Mon. 1999, 106, 409–418. [Google Scholar] [CrossRef]
- Choudary, A.D.R.; Niculescu, C.P. Real Analysis on Intervals; Springer: New Delhi, India, 2014. [Google Scholar]
- Komornik, V. Topology, Calculus and Approximation; Springer: London, UK, 2017. [Google Scholar]
- Varadarajan, V.S. Euler Through Time: A New Look at Old Themes; American Mathematical Society: Providence, RI, USA, 2006. [Google Scholar]
- Dujella, A. Number Theory; Školska Knjiga: Zagreb, Croatia, 2021. [Google Scholar]
- Bateman, P.T.; Diamond, H.G. Analytic Number Theory: An Introductory Course; World Scientific: Hackensack, NJ, USA, 2004. [Google Scholar]
- Hetmaniok, E.; Słota, D.; Wituła, R. Mean Value Theorems; Silesian University of Technology Press: Gliwice, Poland, 2012. (In Polish) [Google Scholar]
- Kołodziej, W. Mathematical Analysis; PWN: Warsaw, Poland, 2009. (In Polish) [Google Scholar]
- Rudin, W. Principles in Mathematical Analysis; McGraw-Hill Publishing Company: New York, NY, USA, 1976. [Google Scholar]
- Bruckner, A.M. Differentiation of Real Functions; Springer: Berlin, Germany, 1978. [Google Scholar]
- Shilov, G.E. Mathematical Analysis. Functions of Several Real Variables; Nauka: Moscow, Poland, 1972. (In Russian) [Google Scholar]
- Lorentz, G.G. Bernstein Polynomials; Chelsea: New York, NY, USA, 1986. [Google Scholar]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin, Germany, 1993. [Google Scholar]
- Wituła, R. Complex Numbers, Polynomials and Partial Fraction Decompositions; Silesian University of Technology Press: Gliwice, Poland, 2010; Volume 3. (In Polish) [Google Scholar]
- Campiti, M.; Metafune, G. Lp-convergence of Bernstein-Kantorovich-type operators. Ann. Pol. Math. 1996, 63, 273–280. [Google Scholar] [CrossRef]
- Acu, A.M.; Rasa, I.; Steopoaie, A.E. Bernstein-Kantorovich operators, approximation and shape preserving properties. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2024, 118, Article 107. [Google Scholar] [CrossRef]
- Aharouch, L.; Ansari, K.J. Approximation by Bernstein-Kantorovich type operators based on Beta function. Filomat 2023, 37, 10445–10457. [Google Scholar] [CrossRef]
- Aktuğlu, H.; Kara, M.; Baytunc, E. ψ-Bernstein-Kantorovich operators. Math. Methods Appl. Sci. 2025, 48, 1124–1141. [Google Scholar] [CrossRef]
- Çetin, N.; Radu, V.A. Approximation by generalized Bernstein-Stancu operators. Turk. J. Math. 2019, 43, 2032–2048. [Google Scholar] [CrossRef]
- Lin, Z.P.; Torun, G.; Kangal, E.; Kantar, Ü.D.; Cai, Q.B. On the properties of the modified λ-Bernstein-Stancu operators. Symmetry 2024, 16, 1276. [Google Scholar] [CrossRef]
- Goldman, R.; Xu, X.W.; Zeng, X.M. Applications of the Shorgin identity to Bernstein type operators. Results Math. 2018, 73, 2. [Google Scholar] [CrossRef]
- Xu, X.W.; Goldman, R. On Lototsky-Bernstein operators and Lototsky-Bernstein bases. Comput. Aided Geom. Des. 2019, 68, 48–59. [Google Scholar] [CrossRef]
- Stancu, D.D. Some Bernstein polynomials in two variables and their applications. Dokl. Akad. Nauk SSSR 1961, 134, 48–51. (In Russian) [Google Scholar]
- Meinardus, G. Approximation von Funktionen und ihre Numerische Behandlung; Springer: Berlin, Germany, 1964. (In German) [Google Scholar]
- Zaritskaya, Z.V. Approximation of many variables functions by S.N. Bernstein polynomials. In Function Theory, Functional Analysis, and Their Applications; Kharkov University Press: Kharkov, USSR, 1966; Volume 2, pp. 21–34. (In Russian) [Google Scholar]
- Knuth, D.; Greene, D. Mathematics for the Analysis of Algorithms; Birkhäuser: Boston, MA, USA, 1982. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science; Addison-Wesley: Reading, MA, USA, 1994. [Google Scholar]
- Pólya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis I; Springer: Berlin, Germany, 1970. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions Hardback; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rabsztyn, D.; Słota, D.; Wituła, R. Gamma and Beta Functions; Silesian University of Technology Press: Gliwice, Poland, 2012; Volume 1. (In Polish) [Google Scholar]
- Knopp, K. Theory and Application of Infinite Series; Dover Publications: Dover, UK, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, M.; Ludew, J.J.; Różański, M.; Smuda, A.; Wituła, R. Asymptotics of Riemann Sums for Uniform Partitions of Intervals of Integration. Symmetry 2025, 17, 226. https://doi.org/10.3390/sym17020226
Adam M, Ludew JJ, Różański M, Smuda A, Wituła R. Asymptotics of Riemann Sums for Uniform Partitions of Intervals of Integration. Symmetry. 2025; 17(2):226. https://doi.org/10.3390/sym17020226
Chicago/Turabian StyleAdam, Marcin, Jakub Jan Ludew, Michał Różański, Adrian Smuda, and Roman Wituła. 2025. "Asymptotics of Riemann Sums for Uniform Partitions of Intervals of Integration" Symmetry 17, no. 2: 226. https://doi.org/10.3390/sym17020226
APA StyleAdam, M., Ludew, J. J., Różański, M., Smuda, A., & Wituła, R. (2025). Asymptotics of Riemann Sums for Uniform Partitions of Intervals of Integration. Symmetry, 17(2), 226. https://doi.org/10.3390/sym17020226