A Brief Survey on the Riemann Hypothesis and Some Attempts to Prove It
Abstract
:1. Introduction
2. About Some Attempts to Prove the RH
2.1. Zero-Free Regions
2.2. The Hilbert–Pólya Conjecture
2.3. The Keiper–Li’s Criterion
2.4. Horizontal Monotonicity
2.5. Hyperbolicity of Jensen Polynomials
2.6. Basing on New Bounds for Large Values of Dirichlet Polynomials
3. Numerical Approach
- : when extended to all nontrivial zeros (including both those on the critical line and those off the critical line, if any exist), see Equation (12);
- : when extended only to all nontrivial zeros located on the critical line;
- : when extended only to all nontrivial zeros off the critical line;
- : when extended only to the first 200 nontrivial zeros located on the critical line (note that each zero with is included along with its conjugate),
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- NIST Digital Library of Mathematical Functions. Available online: https://dlmf.nist.gov/ (accessed on 23 December 2024).
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; Heath-Brown, D.R., Ed.; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Edwards, H.M. Riemann’s Zeta Function; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Hardy, G.H. Sur les zéros de la fonction ξ(s) de Riemann. C. R. Acad. Sci. Paris 1914, 158, 1012–1014. [Google Scholar]
- Jameson, G.J.O. The Prime Number Theorem; First Published: 2003; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- The Riemann Hypothesis. Available online: https://www.aimath.org/WWN/rh/rh.pdf (accessed on 23 December 2024).
- Number theory and physics archive. Available online: https://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/physics.htm (accessed on 23 December 2024).
- Riemann hypothesis. Available online: https://en.wikipedia.org/wiki/Riemann_hypothesis (accessed on 23 December 2024).
- de la Vallée Poussin, C.-J. Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs a une limite donnée. Mémoires Couronnés l’Académie Belg. 1899, 59, 1–74. [Google Scholar]
- von Koch, H. Sur la distribution des nombres premiers [On the distribution of prime numbers]. Acta Math. 1901, 24, 159–182. [Google Scholar] [CrossRef]
- Schoenfeld, L. Sharper bounds for the Chebyshev functions θ(x) and ψ(x), II. Math. Comp. 1976, 30, 337–360. [Google Scholar] [CrossRef]
- Borwein, P.; Choi, S.; Rooney, B.; Weirathmueller, A. The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike; Spring, CMS Books in Mathematics; Springer: Berlin, Germany, 2007; ISBN 978-0-387-72125-5. [Google Scholar] [CrossRef]
- Bombieri, E. The classical theory of zeta and L-functions. Milan J. Math. 2010, 78, 11–59. [Google Scholar] [CrossRef]
- Bombieri, E. New progress on the zeta function: From old conjectures to a major breakthrough. Proc. Natl. Acad. Sci. USA 2019, 116, 11085–11086. [Google Scholar] [CrossRef]
- Conrey, J.B. The Riemann Hypothesis. Notices Am. Math. Soc. 2003, 50, 341–353. [Google Scholar]
- Sarnak, P. Problems of the Millennium: The Riemann Hypothesis. 2004. Available online: https://www.claymath.org/library/annual_report/ar2004/04report_sarnak.pdf (accessed on 23 December 2024).
- Kurokawa, N. The 15 years of the Riemann Hypothesis; Iwanami-Shoten: Tokyo, Japan, 2000. (In Japanese) [Google Scholar]
- Riemann, B. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte Berl. Akad. 1859, 2, 2. [Google Scholar]
- Ford, K. Zero-free regions for the Riemann zeta function. In Number Theory for the Millennium, II (Urbana, IL, 2000); A.K. Peters: Natick, MA, USA, 2002; pp. 25–56. [Google Scholar]
- Mossinghoff, M.J.; Trudgian, T.S. Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function. J. Number Theory 2015, 157, 329–349. [Google Scholar] [CrossRef]
- Mossinghoff, M.J.; Trudgian, T.S.; Andrew Yang, A. Explicit zero-free regions for the Riemann zeta-function. Res. Number Theory 2024, 10, 11. [Google Scholar] [CrossRef]
- Jang, W.J.; Kwon, S.H. A note on Kadiri’s explicit zero free region for Riemann zeta function. J. Korean Math. Soc. 2014, 51, 1291–1304. [Google Scholar] [CrossRef]
- Freitas, P. A Li-type criterion for zero-free half-planes of Riemann’s zeta function. J. Lond. Math. Soc. 2006, 73, 399–414. [Google Scholar] [CrossRef]
- Andrew Odlyzko: Tables of zeros of the Riemann zeta function. Available online: https://www-users.cse.umn.edu/~odlyzko/zeta_tables/index.html (accessed on 23 December 2024).
- Hilbert–Pólya conjecture. Available online: https://en.wikipedia.org/wiki/Hilbert%E2%80%93P%C3%B3lya_conjecture (accessed on 23 December 2024).
- Pólya, G. Über die Nullstellen gewisser ganzer Funktionen. Math. Z. 1918, 2, 352–383. [Google Scholar] [CrossRef]
- Pólya, G. Über trigonometrische Integrale mit nur reellen Nullstellen. J. Reine Angew. Math. 1927, 158, 6–18. [Google Scholar] [CrossRef]
- Bombieri, E.; Lagarias, J. Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 1999, 77, 274–287. [Google Scholar] [CrossRef]
- Brown, F. Li’s criterion and zero-free regions of L-functions. J. Number Theory 2005, 111, 1–32. [Google Scholar] [CrossRef]
- Coffey, M.W. Toward verification of the Riemann hypothesis: Application of the Li criterion. Math. Phys. Anal. Geom. 2005, 8, 211–255. [Google Scholar] [CrossRef]
- Gun, S.; Murty, M.R.; Rath, P. Transcendental sums related to the zeros of zeta functions. Mathematika 2018, 64, 875–897. [Google Scholar] [CrossRef]
- Li, X.-J. The positivity of a sequence of numbers and the Riemann hypothesis. J. Number Theory 1997, 65, 325–333. [Google Scholar] [CrossRef]
- Keiper, J.B. Power series expansions of Riemann’s ξ function. Math. Comp. 1992, 58, 765–773. [Google Scholar]
- Johansson, F. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algorithms 2015, 69, 253–270. [Google Scholar] [CrossRef]
- Coffey, M.W. Relations and positivity results for the derivatives of the Riemann ξ function. J. Comput. Appl. Math. 2004, 166, 525–534. [Google Scholar] [CrossRef]
- Coffey, M.W. New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2008, 464, 711–731. [Google Scholar] [CrossRef]
- Matiyasevich, Y.V. A relationship between certain sums over trivial and nontrivial zeros of the Riemann zeta-function. Math. Notes Acad. Sci. USSR 1989, 45, 131–135. [Google Scholar] [CrossRef]
- Wolfram MathWorld. Available online: https://mathworld.wolfram.com/LisCriterion.html (accessed on 23 December 2024).
- Maślanka, K. Li’s criterion for the Riemann hypothesis–numerical approach. Opusc. Math. 2004, 24, 103–114. [Google Scholar]
- Johansson, F. Fast and Rigorous Computation of Special Functions to High Precision. Ph.D. Thesis, Johannes Kepler Universität, Linz, Austria, 2014. [Google Scholar]
- Voros, A. Sharpening of Li’s criterion for the Riemann hypothesis. Math. Phys. Anal. Geom. 2006, 9, 53–63. [Google Scholar] [CrossRef]
- Matiyasevich, Y.; Saidak, F.; Zvengrowski, P. Horizontal monotonicity of the modulus of the zeta function, the L-function, and related functions. Acta Arith. 2014, 166, 189–200. [Google Scholar] [CrossRef]
- Saidak, F.; Zvengrowski, P. On the modulus of the Riemann zeta function in the critical strip. Math. Slovaca 2003, 53, 145–172. [Google Scholar]
- Spira, R. An inequality for the Riemann zeta-function. Duke Math. J. 1965, 32, 247–250. [Google Scholar] [CrossRef]
- Wolfram MathWorld. Available online: http://mathworld.wolfram.com/RiemannZetaFunction.html (accessed on 23 December 2024).
- Borwein, J.; Bailey, D. Mathematics by Experiment–Plausible Reasoning in the Twenty-First Century; A.K. Peters: Wellesley, MA, USA, 2003. [Google Scholar]
- Griffin, M.; Ono, K.; Rolen, L.; Zagier, D. Jensen polynomials for the Riemann zeta function and other sequences. Proc. Natl. Acad. Sci. USA 2019, 116, 11103–11110. [Google Scholar] [CrossRef]
- Farmer, D.W. Jensen polynomials are not a plausible route to proving the Riemann Hypothesis. Adv. Math. 2022, 411, 108781. [Google Scholar] [CrossRef]
- Guth, L.; Maynard, J. New large value estimates for Dirichlet polynomials. arXiv 2024, arXiv:2405.20552v1. [Google Scholar]
- LMFDB, Database of L-Functions, Modular Forms, and Related Objects. Available online: https://www.lmfdb.org/zeros/zeta/ (accessed on 23 December 2024).
- Odlyzko, A. Tables of Zeros of the Riemann Zeta Function. Available online: http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html (accessed on 23 December 2024).
- Siegel, C.L. Über Riemanns Nachlaßzur analytischen Zahlen-theorie. Quellen Studien Geschichte Math. Astr. Phys. 1932, 2, 45–80. [Google Scholar]
- Brent, R.P.; Platt, D.J.; Trudgian, T. Accurate estimation of sums over zeros of the Riemann zeta-function. Math. Comp. 2021, 90, 2923–2935. [Google Scholar] [CrossRef]
- Mossinghoff, M.J.; Trudgian, T.S. Oscillations in the Goldbach conjecture. J. Théor. Nombres Bordeaux 2022, 34, 295–307. [Google Scholar] [CrossRef]
- Brent, R.P.; van de Lune, J.; te Riele, H.J.J.; Winter, D.T. On the zeros of the Riemann zeta function in the critical strip. II. Math. Comp. 1982, 39, 681–688. [Google Scholar] [CrossRef]
- ZetaGrid Homepage. Available online: http://www.zetagrid.net/ (accessed on 23 December 2024).
- Voros, A. Discretized Keiper/Li approach to the Riemann hypothesis. Exp. Math. 2020, 29, 452–469. [Google Scholar] [CrossRef]
- Gourdon, X. The 1013 First Zeros of the Riemann Zeta Function, and Zeros Computation at Very Large Height, Preprint. 2004. Available online: http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (accessed on 23 December 2024).
- Goodman, L.; Weisstein, E.W. “Riemann Hypothesis.” From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/RiemannHypothesis.html (accessed on 23 December 2024).
- Odlyzko, A.M. The 1022-nd zero of the Riemann zeta function. Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999), pp. 139–144. Contemp. Math. 2001, 290. [Google Scholar]
- Odlyzko, A.M.; Schönhage, A. Fast algorithms for multiple evaluations of the Riemann zeta function. Trans. Amer. Math. Soc. 1988, 309, 797–809. [Google Scholar] [CrossRef]
- Platt, D.; Trudgian, T. The Riemann hypothesis is true up to 3·1012. Bull. Lond. Math. Soc. 2021, 53, 792–797. [Google Scholar] [CrossRef]
- Montgomery, H.L.; Vaughan, R.C. Multiplicative Number Theory: I. Classical Theory; first ed.: 1967; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Davenport, H. Multiplicative Number Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Bach, E.; Shallit, J. Algorithmic Number Theory, Vol. I: Efficient Algorithms; The MIT Press: Cambridge, MA, USA; London, UK, 1996. [Google Scholar]
- Borwein, J.M.; Bradley, D.M.; Crandall, R.E. Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 2000, 121, 247–296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spigler, R. A Brief Survey on the Riemann Hypothesis and Some Attempts to Prove It. Symmetry 2025, 17, 225. https://doi.org/10.3390/sym17020225
Spigler R. A Brief Survey on the Riemann Hypothesis and Some Attempts to Prove It. Symmetry. 2025; 17(2):225. https://doi.org/10.3390/sym17020225
Chicago/Turabian StyleSpigler, Renato. 2025. "A Brief Survey on the Riemann Hypothesis and Some Attempts to Prove It" Symmetry 17, no. 2: 225. https://doi.org/10.3390/sym17020225
APA StyleSpigler, R. (2025). A Brief Survey on the Riemann Hypothesis and Some Attempts to Prove It. Symmetry, 17(2), 225. https://doi.org/10.3390/sym17020225