Diffusion Mechanisms for Both Living and Dying Trees Across 37 Years in a Forest Stand in Lithuania’s Kazlų Rūda Region
Abstract
:1. Introduction
2. Methodology
2.1. Stochastic Differential Equation Framework
2.2. Bivariate Normal Copula
2.3. Semiparametric Maximum Pseudo-Likelihood Procedure
2.4. Parameter Calibration
3. Material
3.1. Sample Collection
3.2. Parameter Estimation
4. Results and Discussion
4.1. Effect of Age on Mortality
4.2. Effect of Tree Size on Mortality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Del Río, M.; Oviedo, J.A.B.; Pretzsch, H.; Löf, M.; Ruiz-Peinado, R. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. For. Syst. 2017, 26, eR03S. [Google Scholar] [CrossRef]
- Hutchings, M.J.; Budd, C.S.J. Plant self-thinning and leaf area dynamics in experimental and natural monocultures. Oikos 1981, 36, 319–325. [Google Scholar] [CrossRef]
- Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions (intraspecific competition among higher plants. J. Biol. Osaka City Univ. 1963, 14, 107–129. [Google Scholar]
- Lalor, A.R.; Law, D.J.; Breshears, D.D.; Falk, D.A.; Field, J.P.; Loehman, R.A.; Triepke, F.J.; Barron-Gafford, G.A. Mortality thresholds of juvenile trees to drought and heatwaves: Implications for forest regeneration across a landscape gradient. Front. For. Glob. Change 2023, 6, 1198156. [Google Scholar] [CrossRef]
- Morris, E. Self-thinning lines differ with fertility level. Ecol. Res. 2002, 17, 17–28. [Google Scholar] [CrossRef]
- Dhakal, T.; Cho, K.H.; Kim, S.-J.; Beon, M.-S. Modeling decline of mountain range forest using survival analysis. Front. For. Glob. Change 2023, 6, 1183509. [Google Scholar] [CrossRef]
- Rose, C.; Hall, D.; Shiver, B.; Clutter, M.; Borders, B. A Multilevel Approach to Individual Tree Survival Prediction. For. Sci. 2006, 52, 31–43. [Google Scholar] [CrossRef]
- Tian, X.; Sun, S.; Mola-Yudego, B.; Cao, T. Predicting individual-tree growth using stand-level simulation, diameter distribution and Bayesian calibration. Ann. For. Sci. 2020, 77, 57. [Google Scholar] [CrossRef]
- Fransson, P.; Brännström, A.; Franklin, O. A tree’s quest for light—Optimal height and diameter growth under a shading canopy. Tree Physiol. 2021, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.G.; Demétrio, C.G.B.; Sermarini, R.A.; Molenberghs, G.; Verbeke, G.; Behling, A.; Marques, E.; Accioly, Y.; Figura, M.A. Height-Diameter Models: A Comprehensive Review with New Insights on Relationships to Generalized Linear Models and Differential Equations. Int. For. Rev. 2024, 26, 398–419. [Google Scholar] [CrossRef]
- Gärtner, A.; Jönsson, A.M.; Metcalfe, D.B.; Pugh, T.A.M.; Tagesson, T.; Ahlström, A. Temperature and Tree Size Explain the Mean Time to Fall of Dead Standing Trees across Large Scales. Forests 2023, 14, 1017. [Google Scholar] [CrossRef]
- Bradford, J.B.; Bell, D.M. A window of opportunity for climate-change adaptation: Easing tree mortality by reducing forest basal area. Front. Ecol. Environ. 2017, 15, 11–17. [Google Scholar] [CrossRef]
- Rogers, B.M.; Solvik, K.; Hogg, E.H.; Ju, J.; Masek, J.G.; Michaelian, M.; Berner, L.T.; Goetz, S.J. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Change Biol. 2018, 24, 2284–2304. [Google Scholar] [CrossRef]
- Rupšys, P. Understanding the Evolution of Tree Size Diversity within the Multivariate Nonsymmetrical Diffusion Process and Information Measures. Mathematics 2019, 7, 761. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Aljarrah, M.; Almagambetova, A.; Zakiyeva, N. On the Regression Model for Generalized Normal Distributions. Entropy 2017, 23, 173. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, T.S.; Potts, M.D.; Kohyama, T.I.; Kassim, A.R.; Ashton, P.S. Demographic properties shape tree size distribution in a Malaysian rain forest. Am. Nat. 2015, 185, 367–379. [Google Scholar] [CrossRef]
- Hara, T. A stochastic model and the moment dynamics of the growth and size distribution in plant populations. J. Theor. Biol. 1984, 109, 173–190. [Google Scholar] [CrossRef]
- Frank, S.A. An enhanced transcription factor repressilator that buffers stochasticity and entrains to an erratic external circadian signal. Front. Syst. Biol. 2023, 3, 1276734. [Google Scholar] [CrossRef]
- Maliyoni, M.; Gaff, H.D.; Govinder, K.S.; Chirove, F. Multipatch stochastic epidemic model for the dynamics of a tick-borne disease. Front. Appl. Math. Stat. 2023, 9, 1122410. [Google Scholar] [CrossRef]
- Mortoja, S.G.; Paul, A.; Panja, P.; Bhattacharya, S.; Mondal, S.K. Role Reversals in a Tri-Trophic Prey–Predator Interaction System: A Model-Based Study Using Deterministic and Stochastic Approaches. Math. Comput. Appl. 2024, 29, 3. [Google Scholar] [CrossRef]
- Leander, J.; Lundh, T.; Jirstrand, M. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Math. Biosci. 2014, 251, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ma, S.; Teng, L.; Liao, X.; Pei, N.; Chen, X. Stochastic differential equation modeling of time-series mining induced ground subsidence. Front. Earth Sci. 2023, 10, 1026895. [Google Scholar] [CrossRef]
- Ito, K. On Stochastic Differential Equations. Mem. Amer. Math. Soc. 1951, 4, 1–51. [Google Scholar] [CrossRef]
- Krikštolaitis, R.; Mozgeris, G.; Petrauskas, E.; Rupšys, P. A Statistical Dependence Framework Based on a Multivariate Normal Copula Function and Stochastic Differential Equations for Multivariate Data in Forestry. Axioms 2023, 12, 457. [Google Scholar] [CrossRef]
- Ditlevsen, S.; Samson, A. Introduction to Stochastic Models in Biology. In Stochastic Biomathematical Models; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2058. [Google Scholar]
- Pouta, P.; Kulha, N.; Kuuluvainen, T.; Aakala, T. Partitioning of Space Among Trees in an Old-Growth Spruce Forest in Subarctic Fennoscandia. Front. For. Glob. Change 2022, 5, 817248. [Google Scholar] [CrossRef]
- Rupšys, P.; Narmontas, M.; Petrauskas, E. A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics 2020, 8, 2230. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, D.; Choi, J. Developing and Comparing Individual Tree Growth Models of Major Coniferous Species in South Korea Based on Stem Analysis Data. Forests 2023, 14, 115. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Diamantopoulou, M.J.; Özçelik, R. Diameter distributions in Pinus sylvestris L. stands: Evaluating modelling approaches including a machine learning technique. J. Forestry Res. 2023, 34, 1829–1842. [Google Scholar] [CrossRef]
- Räty, J.; Hietala, A.M.; Breidenbach, J.; Astrup, R. An analysis of stand-level size distributions of decay-affected Norway spruce trees based on harvester data. Ann. For. Sci. 2023, 80, 2. [Google Scholar] [CrossRef]
- Fu, Y.; He, H.S.; Wang, S.; Wang, L. Combining Weibull distribution and k-nearest neighbor imputation method to predict wall-to-wall tree lists for the entire forest region of Northeast China. Ann. For. Sci. 2022, 79, 42. [Google Scholar] [CrossRef]
- Sa, Q.; Jin, X.; Pukkala, T.; Li, F. Developing Weibull-based diameter distributions for the major coniferous species in Hei-longjiang Province, China. J. Forestry Res. 2023, 34, 1803–1815. [Google Scholar] [CrossRef]
- Øksendal, B.K. An Introduction with Applications. In Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Rupšys, P.; Mozgeris, G.; Petrauskas, E.; Krikštolaitis, R. A Framework for Analyzing Individual-Tree and Whole-Stand Growth by Fusing Multilevel Data: Stochastic Differential Equation and Copula Network. Forests 2023, 14, 2037. [Google Scholar] [CrossRef]
- Ciceu, A.; Chakraborty, D.; Ledermann, T. Examining the transferability of height–diameter model calibration strategies across studies. Forestry 2023, 2023, cpad063. [Google Scholar] [CrossRef]
- Rupšys, P.; Petrauskas, E. On the Construction of Growth Models via Symmetric Copulas and Stochastic Differential Equations. Symmetry 2022, 14, 2127. [Google Scholar] [CrossRef]
- Efron, B.; Hinkley, D.V. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher In-formation. Biometrika 1978, 65, 457–487. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1933, 46, 627–630. [Google Scholar]
- Neumann, M.; Adams, M.A.; Lewis, T. Native Forests Show Resilience to Selective Timber Harvesting in Southeast Queens-land, Australia. Front. For. Glob. Change 2021, 4, 750350. [Google Scholar] [CrossRef]
- Tian, D.; Bi, H.; Jin, X.; Li, F. Stochastic frontiers or regression quantiles for estimating the self-thinning surface in higher di-mensions? J. Forestry Res. 2021, 32, 1515–1533. [Google Scholar] [CrossRef]
- Mrad, A.; Manzoni, S.; Oren, R.; Vico, G.; Lindh, M.; Katul, G. Recovering the Metabolic, Self-Thinning, and Constant Final Yield Rules in Mono-Specific Stands. Front. For. Glob. Change 2020, 3, 62. [Google Scholar] [CrossRef]
- McCune, B.; Cottam, G. The successional status of a southern Wisconsin oak woods. Ecology 1985, 66, 1270–1278. [Google Scholar] [CrossRef]
- Sheil, D.; May, R.M. Mortality and recruitment rate evaluations in heterogeneous tropical forests. J. Ecol. 1996, 84, 91–100. [Google Scholar] [CrossRef]
- Westoby, M. The Self-Thinning Rule. Adv. Ecol. Res. 1984, 14, 167–225. [Google Scholar]
- Pavel, M.A.A.; Barreiro, S.; Tomé, M. The Importance of Using Permanent Plots Data to Fit the Self-Thinning Line: An Example for Maritime Pine Stands in Portugal. Forests 2023, 14, 1354. [Google Scholar] [CrossRef]
- Gavrikov, V.L. A simple theory to link bole surface area, stem density and average tree dimensions in a forest stand. Eur. J. For. Res. 2014, 133, 1087–1109. [Google Scholar] [CrossRef]
Species | Living Trees | Dead Trees | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
δ | δ | |||||||||||
Diameter, | ||||||||||||
All | 0.0904 | 0.0252 | −6.3206 | - | 0.0051 | 0.0075 | 0.0904 | 0.0251 | −3.4080 | - | 0.0059 | 0.0112 |
Pine | 0.0815 | 0.0198 | −20.0858 | - | 0.0008 | 0.0027 | 0.1043 | 0.0292 | −7.3245 | - | 0.0021 | 0.0067 |
Spruce | 0.0967 | 0.0296 | −1.5744 | - | 0.0098 | 0.0102 | 0.1415 | 0.0564 | −0.5799 | - | 0.0185 | 0.0233 |
Birch | 0.1421 | 0.0427 | −4.6322 | - | 0.0071 | 0.0159 | 0.4630 | 0.1865 | 0.0479 | - | 0.0504 | 0.0938 |
δ | δ | |||||||||||
Occupied area, | ||||||||||||
All | 0.0499 | 0.0139 | −1.8124 | 1.6003 | 0.0075 | 0.0086 | 0.0586 | 0.0195 | −0.8030 | 1.6003 | 0.0121 | 0.0118 |
Pine | 0.0620 | 0.0177 | −1.6587 | 1.6040 | 0.0079 | 0.0086 | 0.0486 | 0.0126 | −1.1019 | 1.6040 | 0.0078 | 0.0099 |
Spruce | 0.0559 | 0.0180 | −0.8855 | 2.1216 | 0.0131 | 0.0103 | 0.0533 | 0.0176 | −0.6102 | 2.1216 | 0.0148 | 0.0101 |
Birch | 0.0581 | 0.0177 | −2.0621 | 2.0168 | 0.0083 | 0.0093 | 0.1042 | 0.0408 | −2.1966 | 2.0168 | 0.0134 | 0.0151 |
Tree Species | B (%) | AB (%) | RMSE (%) | R2 |
---|---|---|---|---|
All | 131.963 | 133.167 | 171.593 | 0.9439 |
(11.82) | (11.93) | (15.37) | ||
Pine | 88.359 | 89.201 | 130.075 | 0.9691 |
(11.25) | (11.36) | (16.56) | ||
Spruce | 59.866 | 66.511 | 101.429 | 0.9457 |
(14.30) | (15.89) | (24.23) | ||
Birch | 3.292 | 13.651 | 22.028 | 0.9577 |
(4.47) | (18.56) | (29.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrauskas, E.; Rupšys, P. Diffusion Mechanisms for Both Living and Dying Trees Across 37 Years in a Forest Stand in Lithuania’s Kazlų Rūda Region. Symmetry 2025, 17, 213. https://doi.org/10.3390/sym17020213
Petrauskas E, Rupšys P. Diffusion Mechanisms for Both Living and Dying Trees Across 37 Years in a Forest Stand in Lithuania’s Kazlų Rūda Region. Symmetry. 2025; 17(2):213. https://doi.org/10.3390/sym17020213
Chicago/Turabian StylePetrauskas, Edmundas, and Petras Rupšys. 2025. "Diffusion Mechanisms for Both Living and Dying Trees Across 37 Years in a Forest Stand in Lithuania’s Kazlų Rūda Region" Symmetry 17, no. 2: 213. https://doi.org/10.3390/sym17020213
APA StylePetrauskas, E., & Rupšys, P. (2025). Diffusion Mechanisms for Both Living and Dying Trees Across 37 Years in a Forest Stand in Lithuania’s Kazlų Rūda Region. Symmetry, 17(2), 213. https://doi.org/10.3390/sym17020213