Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials
Abstract
:1. Introduction and Preliminaries
- 1.
- If , we obtain the Fibonacci polynomials ;
- 2.
- If and , we obtain the Lucas polynomials ;
- 3.
- If , and , we obtain the first kind of Chebyshev polynomials ;
- 4.
- If , and , we obtain the second kind of Chebyshev polynomials ;
- 5.
- If and , we obtain the Pell polynomials ;
- 6.
- If and we obtain the first kind of Pell–Lucas polynomials .
2. Coefficient Bounds for the Subclasses , and
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Irmak, H. Various results for series expansions of the error functions with the complex variable and some of their implications. Turk. J. Math. 2020, 44, 1640–1648. [Google Scholar] [CrossRef]
- Irmak, H.; Duran, M. Some results for error function with complex argument. J. Orissa Math. Soc. 2019, 38, 53–68. [Google Scholar]
- Alzer, H. Error functions inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Coman, D. The radius of starlikeness for error function. Stud. Univ. Babes Bolyal Math. 1991, 36, 13–16. [Google Scholar]
- Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs and Matematical Tables; Dover Publications Inc.: New York, NY, USA, 1972. [Google Scholar]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Miller, S.; Mocanu, P. Differential Subordination: Theory and Applications; CRC Press: New York, NY, USA, 2000. [Google Scholar]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Comp. Anal. 2014, 2014, 693908. [Google Scholar]
- Illafe, M.; Mohd, M.H.; Yousef, F.; Supramaniam, S. A Subclass of Bi-univalent Functions Defined by aSymmetric q-Derivative Operator and Gegenbauer Polynomials. European J. Pure App. Math. 2024, 17, 2467–2480. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. App. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abst. App. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Frasin, B.A. Some lower bounds for the quotients of normalized error function and their partial sums. Arch. Math. 2025. submitted. [Google Scholar]
- Ramachandran, C.; Vanitha, L.; Kanas, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca. 2018, 68, 361–368. [Google Scholar] [CrossRef]
- Mohammed, N.H.; Cho, N.E.; Adegani, E.A.; Bulboaca, T. Geometric properties of normalized imaginary error function. Stud. Univ. Babes-Bolyai Math. 2022, 67, 455–462. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Marčoková, M.; Guldan, V. Jacobi polynomials and some related functions. In Mathematical Methods in Engineering; Springer: Dordrecht, The Netherlands, 2019; pp. 219–227. [Google Scholar]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a certain discrete probability distribution with a subclass of bi-univalent functions involving Gegenbauer polynomials. Math. Prob. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Hussen, A.; Zeyani, A. Coefficients and Fekete-Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics 2023, 11, 2852. [Google Scholar] [CrossRef]
- Hussen, A.; Illafe, M.; Zeyani, A. Fekete-Szegö and Second Hankel Determinant for a Certain Subclass of Bi-Univalent Functions associated with Lucas-Balancing Polynomials. Int. J. Neutrosophic Sci. 2025, 25, 417–434. [Google Scholar]
- Illafe, M.; Mohd, M.H.; Yousef, F.; Supramaniam, S. Investigating inclusion, neighborhood, and partial sums properties for a general subclass of analytic functions. Int. J. Neutrosophic Sci. 2025, 25, 501–510. [Google Scholar]
- Illafe, M.; Mohd, M.H.; Yousef, F.; Supramaniam, S. Bounds for the second hankel determinant of a general subclass of bi-univalent functions. Int. J. Math. Eng. Manag. Sci. 2024, 9, 1226–1239. [Google Scholar] [CrossRef]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 1965, 3, 161–176. [Google Scholar] [CrossRef]
- Horadam, A.F. Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J. 1965, 32, 437–446. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazileviĉ functions of order ς+iδ associated with (p; q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 1–12. [Google Scholar] [CrossRef]
- Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry 2023, 15, 785. [Google Scholar] [CrossRef]
- Hussen, A. An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions. Heliyon 2024, 10, e31469. [Google Scholar] [CrossRef]
- Zaprawa, P. Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. 2014, 2014, 357480. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, T.; Frasin, B.; Breaz, D.; Cotîrlă, L.-I. Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials. Symmetry 2025, 17, 211. https://doi.org/10.3390/sym17020211
Al-Hawary T, Frasin B, Breaz D, Cotîrlă L-I. Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials. Symmetry. 2025; 17(2):211. https://doi.org/10.3390/sym17020211
Chicago/Turabian StyleAl-Hawary, Tariq, Basem Frasin, Daniel Breaz, and Luminita-Ioana Cotîrlă. 2025. "Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials" Symmetry 17, no. 2: 211. https://doi.org/10.3390/sym17020211
APA StyleAl-Hawary, T., Frasin, B., Breaz, D., & Cotîrlă, L.-I. (2025). Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials. Symmetry, 17(2), 211. https://doi.org/10.3390/sym17020211