Descriptions of Spectra of Algebras of Bounded-Type Block-Symmetric Analytic Functions
Abstract
1. Introduction
2. Preliminaries
2.1. Entire Exponential Functions with Plane Zeros
2.2. Block-Symmetric Polynomials and Bounded-Type Analytic Functions
- The intertwining operation is given by and the corresponding intertwining operator is defined by
- The multiplicative shift of x and denoted by is defined as a vector consisting of the elements , listed in an arbitrary fixed order. The associated multiplicative operator is defined by
- For and the symmetric convolution is defined asFor one defines
- For and the multiplicative convolution is defined asFor one defines
2.3. Summary of Preliminaries
3. The Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; Maestre, M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28, 393–404. [Google Scholar] [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar] [CrossRef]
- Gonzalo, R. Multilinear forms, subsymmetric polynomials, and spreading models on Banach spaces. J. Math. Anal. Appl. 1996, 202, 379–397. [Google Scholar] [CrossRef]
- Hájek, P. Polynomial algebras on classical banach spaces. Isr. J. Math. 1998, 106, 209–220, Erratum in Isr. J. Math. 2015, 207, 1003–1012. https://doi.org/10.1007/s11856-015-1155-y. [Google Scholar] [CrossRef]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; University Lecture Serie; AMS: Providence, RI, USA, 1997; Volume 12. [Google Scholar]
- Kraft, H.; Procesi, C. Classical Invariant Theory: A Primer. Lecture Notes: 1996. Available online: https://dmi.unibas.ch/fileadmin/user_upload/dmi/Personen/Kraft_Hanspeter/Classical_Invariant_Theory.pdf (accessed on 13 September 2025).
- Weyl, H. The Classical Groups: Their Invariants and Representations; Princeton University Press: Princenton, NJ, USA, 1973. [Google Scholar] [CrossRef]
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51–93. [Google Scholar]
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Weak-star continuous analytic functions. Can. J. Math. 1995, 47, 673–683. [Google Scholar] [CrossRef]
- Aron, R.M.; Galindo, P.; Garcia, D.; Maestre, M. Regularity and algebras of analytic functions in infinite dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. [Google Scholar] [CrossRef]
- Carando, D.; García, D.; Maestre, M. Homomorphisms and composition operators on algebras of analytic functions of bounded type. Adv. Math. 2005, 197, 607–629. [Google Scholar] [CrossRef]
- Carando, D.; Dimant, V.; Rodríguez, J.T. Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces. Math. Z. 2023, 304, 17. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. On the spectrum of the algebra of bounded-type symmetric analytic functions on ℓ1. Math. Nachr. 2024, 297, 3835–3846. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [Google Scholar] [CrossRef]
- Aron, R.M.; Berner, P.D. A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 1978, 106, 3–24. [Google Scholar] [CrossRef]
- Davie, A.M.; Gamelin, T.W. A theorem on polynomial-star approximation. Proc. Amer. Math. Soc. 1989, 106, 351–356. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of Entire Symmetric Functions on Spaces of Lebesgue-Measurable Essentially Bounded Functions. J. Math. Sci. 2020, 246, 264–276. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of symmetric analytic functions on cartesian powers of Lebesgue integrable in a power p ∈ [1, ∞) functions. Carpathian Math. Publ. 2021, 13, 340–351. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions. Carpathian Math. Publ. 2024, 16, 174–189. [Google Scholar] [CrossRef]
- Vasylyshyn, S. Spectra of algebras of analytic functions, generated by sequences of polynomials on Banach spaces, and operations on spectra. Carpathian Math. Publ. 2023, 15, 104–119. [Google Scholar] [CrossRef]
- Halushchak, S. Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials. Carpathian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Ponomarov, R.V.; Vasylyshyn, T.V. Symmetric polynomials on Cartesian products of Banach spaces of Lebesgue integrable functions. Carpathian Math. Publ. 2025, 17, 483–515. [Google Scholar] [CrossRef]
- Kravtsiv, V. Block-supersymmetric polynomials on spaces of absolutely convergent series. Symmetry 2024, 16, 197. [Google Scholar] [CrossRef]
- Zagorodnyuk, A.V.; Kravtsiv, V.V. Multiplicative convolution on the algebra of block-symmetric analytic functions. J. Math. Sci. 2020, 246, 245–255. [Google Scholar] [CrossRef]
- Rosas, M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Combin. Theory Ser. A 2001, 96, 326–340. [Google Scholar] [CrossRef]
- Zweig, A. Theory of Symmetric Neural Networks. Ph.D. Thesis, New York University, New York, NY, USA, 2024. Available online: https://www.proquest.com/openview/b91f579561b9326a8373f793230b4031/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 27 October 2025).
- Zhao, B.; Walters, R.; Yu, R. Symmetry in Neural Network Parameter Spaces. arXiv 2025, arXiv:2506.13018. [Google Scholar] [CrossRef]
- Hu, S.X.; Zagoruyko, S.; Komodakis, N. Exploring weight symmetry in deep neural networks. Comput. Vis. Image Underst. 2019, 187, 102786. [Google Scholar] [CrossRef]
- Balantekin, A.B. Partition functions in statistical mechanics, symmetric functions, and group representation. Phys. Rev. E 2001, 64, 066105/1–066105/8. [Google Scholar] [CrossRef]
- Schmidt, H.J.; Schnack, J. Thermodynamic fermion-boson symmetry in harmonic oscillator potentials. Phys. A Stat. Mech. Its Appl. 1999, 265, 584–589. [Google Scholar] [CrossRef]
- Chernega, I.; Martsinkiv, M.; Vasylyshyn, T.; Zagorodnyuk, A. Applications of supersymmetric polynomials in statistical quantum physics. Quantum Rep. 2023, 5, 683–697. [Google Scholar] [CrossRef]
- Kravtsiv, V.V.; Zagorodnyuk, A. Spectra of algebras of block-symmetric analytic functions of bounded type. Mat. Stud. 2022, 58, 69–81. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Ronkin, L.I. Introduction in the Theory of Entire Functions of Several Variables; AMS: Providence, RI, USA, 1974. [Google Scholar]
- Bandura, A.I.; Skaskiv, O.B. Boundedness of l-index in direction of functions of the form f(〈z,m〉) and existence theorems. Mat. Stud. 2014, 41, 45–52. [Google Scholar] [CrossRef]
- Gruman, L. The regularity of growth of entire functions whose zeros are hyperplanes. Ark. Mat. 1972, 10, 23–31. [Google Scholar] [CrossRef]
- Papush, D. On the growth of entire functions with “planar” zeros. J. Math. Sci. 1990, 49, 930–935. [Google Scholar] [CrossRef]
- Papush, D.I.; Russakovskii, A.M. Interpolation on plane sets in C2. Ann. Fac. Sci. Toulouse Math. 1992, 1, 337–362. Available online: https://www.numdam.org/item/?id=AFST_1992_6_1_3_337_0 (accessed on 27 October 2025). [CrossRef]
- Levin, B.Y. Lectures in Entire Functions; Translations of Mathematical Monograph, 150; AMS: Providence, RI, USA, 1996. [Google Scholar]
- Kravtsiv, V.; Dolishniak, P.; Stakhiv, R. Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials. Mat. Stud. 2025, 63, 210–220. [Google Scholar] [CrossRef]
- Kravtsiv, V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [Google Scholar] [CrossRef]
- Hardy, M. Combinatorics of Partial Derivatives. arXiv 2006, arXiv:math/0601149. [Google Scholar] [CrossRef] [PubMed]
| Known Results | New Results in the Paper |
|---|---|
| The representation of the spectrum of by special entire exponential functions ([17]) | The representation of the spectrum of by special entire exponential functions with plane zeros (Theorem 4) |
| The general form of characters of ([16]) | The general form of characters of (Theorem 5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravtsiv, V.; Zagorodnyuk, A. Descriptions of Spectra of Algebras of Bounded-Type Block-Symmetric Analytic Functions. Symmetry 2025, 17, 1974. https://doi.org/10.3390/sym17111974
Kravtsiv V, Zagorodnyuk A. Descriptions of Spectra of Algebras of Bounded-Type Block-Symmetric Analytic Functions. Symmetry. 2025; 17(11):1974. https://doi.org/10.3390/sym17111974
Chicago/Turabian StyleKravtsiv, Viktoriia, and Andriy Zagorodnyuk. 2025. "Descriptions of Spectra of Algebras of Bounded-Type Block-Symmetric Analytic Functions" Symmetry 17, no. 11: 1974. https://doi.org/10.3390/sym17111974
APA StyleKravtsiv, V., & Zagorodnyuk, A. (2025). Descriptions of Spectra of Algebras of Bounded-Type Block-Symmetric Analytic Functions. Symmetry, 17(11), 1974. https://doi.org/10.3390/sym17111974

