Basic Study of Blood Coagulation by Microplasma
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Microplasma Electrode
2.3. Ozone Generation
2.4. Blood Sample Preparation
3. Results
4. Discussions
4.1. Discussions of the Obtained Results
4.2. Limitations/Future Work
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, K.; Blajan, M.; Kuwabara, T. Removal of indoor air contaminant by atmospheric microplasma. IEEE Trans. Ind. Appl. 2011, 47, 2351–2358. [Google Scholar] [CrossRef]
- Blajan, M.; Nonaka, D.; Kristof, J.; Shimizu, K. Study of Induced EHD flow by microplasma vortex Generator. IEEE Trans. Plasma Sci. 2019, 47, 5345–5354. [Google Scholar] [CrossRef]
- Blajan, M.; Umeda, A.; Muramatsu, S.; Shimizu, K. Emission spectroscopy of pulsed powered microplasma for surface treatment of PEN film. IEEE Trans. Ind. Appl. 2011, 47, 1100–1108. [Google Scholar] [CrossRef]
- Blajan, M.G.; Ciorita, A.; Surducan, E.; Surducan, V.; Shimizu, K. Biological decontamination by microplasma. Appl. Sci. 2025, 15, 2527. [Google Scholar] [CrossRef]
- Shimizu, K.; Hayashida, K.; Blajan, M. Novel method to improve transdermal drug delivery by atmospheric microplasma irradiation. Biointerphases 2015, 10, 029517. [Google Scholar] [CrossRef]
- Iza, F.; Kim, G.J.; Lee, S.M.; Lee, J.K.; Walsh, J.L.; Zhang, Y.T.; Kong, M.G. Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Process. Polym. 2008, 5, 322–344. [Google Scholar] [CrossRef]
- Gershman, S.; Harreguy, M.B.; Yatom, S.; Raitses, Y.; Efthimion, P.; Haspel, G. A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide. Sci. Rep. 2021, 11, 4626. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Jin, Q.; Zheng, C.; Deng, G.; Yin, S.; Liu, Z. Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy. Plasma Sci. Technol. 2018, 20, 044005. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, G.; Obenchain, R.; Zhang, R.; Bai, F.; Fang, T.; Wang, H.; Lu, Y.; Wirz, R.E.; Gu, Z. Cold atmospheric plasma delivery for biomedical applications. Mater. Today 2022, 54, 153–188. [Google Scholar] [CrossRef]
- Cheng, K.; Lin, Z.; Cheng, Y.; Chiu, H.; Yeh, N.; Wu, T.; Wu, J. Wound healing in Streptozotocin-Induced diabetic rats using Atmospheric-Pressure argon plasma jet. Sci. Rep. 2018, 8, 12214. [Google Scholar] [CrossRef]
- Nomura, Y.; Takamatsu, T.; Kawano, H.; Miyahara, H.; Okino, A.; Yoshida, M.; Azuma, T. Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo. J. Surg. Res. 2017, 219, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Ikehara, S.; Takei, H.; Akimoto, Y.; Sakakita, H.; Ishikawa, K.; Ueda, M.; Ikeda, J.; Yamagishi, M.; Kim, J.; et al. Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 2016, 605, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Bekeschus, S.; Brüggemeier, J.; Hackbarth, C.; von Woedtke, T.; Partecke, L.; van der Linde, J. Platelets are key in cold physical plasma-facilitated blood coagulation in mice. Clin. Plasma Med. 2017, 7–8, 58–65. [Google Scholar] [CrossRef]
- Rad, Z.S.; Davani, F.A.; Etaati, G. Determination of proper treatment time for in vivo blood coagulation and wound healing application by non-thermal helium plasma jet. Australas. Phys. Eng. Sci. Med. 2018, 41, 905–917. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Zheng, H.; Zhang, B.; Li, Y.; Zhang, Y.; Xu, Z.; Xu, A.; Jin, S.; Fang, Z.; et al. Low-temperature plasma efficiently promotes blood coagulation with less thermal injury in porcine models. Sci. Rep. 2025, 15, 31596. [Google Scholar] [CrossRef] [PubMed]
- Fridman, G.; Peddinghaus, M.; Balasubramanian, M.; Ayan, H.; Fridman, A.; Gutsol, A.; Brooks, A. Blood coagulation and living tissue sterilization by Floating-Electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 2006, 26, 425–442. [Google Scholar] [CrossRef]
- Polito, J.; Quesada, M.J.H.; Stapelmann, K.; Kushner, M.J. Reaction mechanism for atmospheric pressure plasma treatment of cysteine in solution. J. Phys. D Appl. Phys. 2023, 56, 395205. [Google Scholar] [CrossRef]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
- Sakiyama, Y.; Graves, D.B.; Chang, H.; Shimizu, T.; Morfill, G.E. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D Appl. Phys. 2012, 45, 425201. [Google Scholar] [CrossRef]
- Trostchansky, A.; Moore-Carrasco, R.; Fuentes, E. Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat. 2019, 145, 106382. [Google Scholar] [CrossRef]
- Yu, J.; Duan, W.; Zhang, J.; Hao, M.; Li, J.; Zhao, R.; Wu, W.; Sua, H.H.; Jun, H.K.; Liu, Y.; et al. Superhydrophobic ROS biocatalytic metal coatings for the rapid healing of diabetic wounds. Mater. Today Bio 2025, 32, 101840. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.A.; Bychkova, A.V.; Shchegolikhin, A.N.; Leonova, V.B.; Kostanova, E.A.; Biryukova, M.I.; Sultimova, N.B.; Konstantinova, M.L. Fibrin self-assembly is adapted to oxidation. Free Radic. Biol. Med. 2016, 95, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Mindukshev, I.; Fock, E.; Dobrylko, I.; Sudnitsyna, J.; Gambaryan, S.; Panteleev, M.A. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int. J. Mol. Sci. 2022, 23, 10667. [Google Scholar] [CrossRef] [PubMed]
Power (W) | |||
---|---|---|---|
Discharge Voltage | −3 kV | −3.2 kV | −3.4 kV |
Frequency 700 Hz | 0.932 | 1.095 | 1.098 |
Frequency 825 Hz | 1.099 | 1.291 | 1.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blajan, M.G.; Stoica, A.D.; Sevcencu, C.; Tripon, S.C.; Surducan, V.; Shimizu, K. Basic Study of Blood Coagulation by Microplasma. Symmetry 2025, 17, 1786. https://doi.org/10.3390/sym17111786
Blajan MG, Stoica AD, Sevcencu C, Tripon SC, Surducan V, Shimizu K. Basic Study of Blood Coagulation by Microplasma. Symmetry. 2025; 17(11):1786. https://doi.org/10.3390/sym17111786
Chicago/Turabian StyleBlajan, Marius Gabriel, Anca Daniela Stoica, Cristian Sevcencu, Septimiu Cassian Tripon, Vasile Surducan, and Kazuo Shimizu. 2025. "Basic Study of Blood Coagulation by Microplasma" Symmetry 17, no. 11: 1786. https://doi.org/10.3390/sym17111786
APA StyleBlajan, M. G., Stoica, A. D., Sevcencu, C., Tripon, S. C., Surducan, V., & Shimizu, K. (2025). Basic Study of Blood Coagulation by Microplasma. Symmetry, 17(11), 1786. https://doi.org/10.3390/sym17111786