The Sharp Coefficients and Hankel Determinants for a Novel Class
Abstract
1. Introduction
2. Set of Lemmas
3. Main Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.G.; Mashwani, W.K.; Shi, L.; Araci, S.; Ahmad, B.; Khan, B. Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Math. 2023, 8, 21993–22008. [Google Scholar] [CrossRef]
- Wang, Z.G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp Bounds On Hankel Determinants for Certain Subclass of Starlike Functions. J. Appl. Anal. Comput. 2022, 13, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Răducanu, D. On Coefficient Estimates for a Certain Class of Analytic Functions. Mathematics 2022, 11, 12. [Google Scholar] [CrossRef]
- Orhan, H.; Toklu, E.; Kadıoğlu, E. Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials. Turk. J. Math. 2018, 42, 1927–1940. [Google Scholar] [CrossRef]
- Tang, H.; Arif, M.; Abbas, M.; Tawfiq, F.M.; Malik, S.N. Analysis of Coefficient-Related Problems for Starlike Functions with Symmetric Points Connected with a Three-Leaf-Shaped Domain. Symmetry 2023, 15, 1837. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Wen, C.; Li, Z.; Guo, D. Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions. Mathematics 2024, 12, 1875. [Google Scholar] [CrossRef]
- Liu, D.; Ahmad, A.; Ikhlas, H.; Hussain, S.; Noor, S.; Tang, H. On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions. Axioms 2025, 14, 191. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, V.S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Rlibera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecho, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Guo, D.; Diao, Z.; Huang, J.
The Sharp Coefficients and Hankel Determinants for a Novel Class
Wen C, Guo D, Diao Z, Huang J.
The Sharp Coefficients and Hankel Determinants for a Novel Class
Wen, Chuanjun, Dong Guo, Zhongcan Diao, and Jinchao Huang.
2025. "The Sharp Coefficients and Hankel Determinants for a Novel Class
Wen, C., Guo, D., Diao, Z., & Huang, J.
(2025). The Sharp Coefficients and Hankel Determinants for a Novel Class