Next Article in Journal
Illuminating Dark Matter Admixed in Neutron Stars with Simultaneous Mass–Radius Constraints
Previous Article in Journal
Thermo-Mechanical Coupled Characteristics for the Non-Axisymmetric Outer Ring of the High-Speed Rail Axle Box Bearing with Embedded Intelligent Sensor Slots
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Sharp Coefficients and Hankel Determinants for a Novel Class RLP

1
School of Mathematical Sciences, Yangzhou Polytechnic University, Yangzhou 225009, China
2
Department of Basic Disciplines, Chuzhou Polytechnic College, Chuzhou 239000, China
*
Authors to whom correspondence should be addressed.
Symmetry 2025, 17(10), 1668; https://doi.org/10.3390/sym17101668
Submission received: 30 July 2025 / Revised: 4 September 2025 / Accepted: 15 September 2025 / Published: 6 October 2025
(This article belongs to the Section Mathematics)

Abstract

Let R L P denote a newly introduced subclass of bounded turning functions. The primary aim of this study is to investigate the sharp bounds of the coefficients of | d 2 | , | d 3 | , | d 4 | , | d 5 | , as well as to establish precise estimates for the second- and third-order Hankel determinants H 2 , 1 , H 2 , 2 , H 2 , 3 , and H 3 , 1 for functions belonging to this class. The coefficient bounds and Hankel determinant estimates derived herein are all shown to be sharp.

1. Introduction

Complex analysis is a fundamental discipline within the mathematical sciences, extensively studied due to its broad applicability in areas such as engineering, electronics, and nonlinear integrable systems theory, among others. Notably, the theory of geometric functions forms an intriguing research direction within complex analysis, focusing on the exploration of geometric properties and characteristics of analytic functions.
Within geometric function theory, the precise estimation of coefficients and the analysis of Hankel determinants for analytic and univalent functions have constituted a central research area for decades. Although these concepts are distinct, they are intimately associated, offering crucial information about the structure and attributes of functions analytic in the open unit disk. Sharp coefficients pertain to the most restrictive admissible bounds for the Taylor coefficients of a given function class, ensuring that no uniformly smaller bound exists. The Hankel determinant, constructed from these coefficients, provides a quantitative measure of functional complexity and finds extensive use in exploring univalence, starlikeness, and convexity properties of analytic functions.
Recent advancements in the field have generated increasing interest in extending classical results to more specialized subclasses of analytic functions. These extensions frequently involve functions characterized by q-calculus, fractional operators, or subordination to particular analytic functions that map into geometrically significant or symmetric domains. For instance, investigations have addressed starlike functions associated with symmetric domains, including the Booth lemniscate, limaçon curves, and domains bounded by trigonometric or hyperbolic curves [1,2]. Such studies not only generalize foundational results but also provide new insights into the intricate relationship between coefficient bounds and the geometric attributes of image domains for analytic mappings.
Let g ( ζ ) be holomorphic in the unit disk U = { ζ C : | ζ | < 1 } normalized such that g ( 0 ) = g ( 0 ) 1 = 0 and let H denote the class of all such functions g ( ζ ) . Then, for g ( ζ ) H , the expansion has the form:
g ( ε ) = ε + k = 2 d k ε k ( ε U ) .
For given i , k N = { 1 , 2 , 3 } , the Hankel determinant H i , k ( g ) was introduced by Pommerenke [3,4] for a function g S with a power series expansion (1) as follows:
H i , k ( g ) = d k d k + 1 · · · d k + i 1 d k + 1 d k + 2 · · · d k + i d k + i 1 d k + i · · · d k + 2 i 2 .
For d 1 = 1, and some particular values of k and i, we get the second- and third- order Hankel determinants as:
H 2 , 1 ( g ) = d 2 2 + d 3 ,
H 2 , 2 ( g ) = d 2 d 4 d 3 2 ,
H 2 , 3 ( g ) = d 4 2 + d 5 d 3 ,
H 3 , 1 ( g ) = d 2 2 d 5 + 2 d 2 d 3 d 4 d 4 2 d 3 3 + d 3 d 5
The Hankel matrix serves as a pivotal analytical tool in pure mathematics and numerous applied fields, with far-reaching applications in Markov process theory, nonstationary signal processing within the context of the Hamburger moment problem, and partition functions represented by Jacobi weights, among others [5,6,7]. The initial sharp bounds for the third-order Hankel determinant for convex functions were established in [8], subsequently motivating extensive related research [9,10].
In [10], a subclass of starlike functions, denoted as S L P * , was defined using the subordination technique, where sharp upper bounds were obtained for the first four Taylor coefficients as well as for the second- and third-order Hankel determinants.
S L P * = g H : ε g ( ε ) g ( ε ) 1 + s i n ε ( ε U ) .
Motivated by the approach for S L P * , we introduce a novel subclass of bounded turning functions as follows:
R L P = g H : g ( ε ) 1 + s i n ε , ( ε U ) .
This condition is geometrically distinct from that of S L P * and leads to a different set of coefficient relations and challenges. The primary aim is to perform a complete analysis of the early coefficient and Hankel determinant problems for this new class.
This paper introduces and investigates a novel subclass of analytic functions with bounded turning, denoted R L P , defined by the subordination condition g ( ε ) 1 + s i n ε . The primary objective is to derive the sharp bounds for the initial Taylor-Maclaurin coefficients | d n | for n = 2 , 3 , 4 , 5 . Furthermore, we establish precise and sharp estimates for several Hankel determinants, specifically the second-order determinants H 2 , 1 , H 2 , 2 , H 2 , 3 , and the third-order determinant H 3 , 1 . The methodology involves transforming the subordination condition into a problem of optimizing functionals over the Carathéodory class of functions with positive real part. By employing a series of established lemmas and intricate inequalities, we perform a detailed and systematic analysis to obtain the optimal bounds. For each result, we explicitly construct extremal functions that demonstrate the sharpness of our inequalities, confirming that the derived bounds cannot be improved.
After this introduction, Section 2 lists the necessary lemmas required for the proofs. Section 3 presents our main results: sharp bounds for | d 2 | to | d 5 | (Theorem 1), H 2 , 1 (Theorem 2), H 2 , 2 (Theorem 3), H 2 , 3 (Theorem 4), and H 3 , 1 (Theorem 5). Each theorem is followed by a detailed proof, outlining the methodological steps and the construction of extremal functions to prove sharpness. The paper concludes with acknowledgments and references.

2. Set of Lemmas

Let P denote the family of functions p holomorphic in U such that R e p ( ε ) > 0 , with the following power series expansion:
p ( ε ) = p 1 ε + p 2 ε 2 + p 3 ε 3 + ( ε U ) .
To establish the main results, we require the following lemmas.
Lemma 1
([11]). If p P is of the form (6), then
| p m | 2 m 1
| p m + k η p m p k | 2 , 0 η 1 .
Lemma 2
([12]). If p P is of the form (6). Then for 0 L 1 and L ( 2 L 1 ) T L the following inequality hold true:
| T p 1 3 2 L p 1 p 2 + p 3 | 2 .
Lemma 3
([13]). Let ζ , v , k and μ satisfying the conditions 0 < μ < 1 , 0 < ζ < 1 and
8 μ ( 1 μ ) [ ( ζ v 2 k ) 2 + ( ζ ( μ + ζ ) v ) 2 + ζ ( 1 ζ ) ( v 2 μ ζ ) 2 ] 4 ζ 2 ( 1 ζ ) 2 μ ( 1 μ )
then for p P , given in (6), we have
| p 4 3 2 v p 1 2 p 2 + 2 ζ p 1 p 3 + μ p 2 2 + k p 1 4 | 2 .
Lemma 4
([14,15]). If p P is of the form (6), then
(11) 2 p 2   =   p 1 2 + ξ ( 4 p 1 2 ) , (12) 4 p 3   =   p 1 3 + 2 p 1 ξ ( 4 p 1 2 ) p 1 ξ 2 ( 4 p 1 2 ) + 2 ( 4 p 1 2 ) ( 1 | ξ | 2 ) t ,   8 p 4   =   p 1 4 + ( 4 p 1 2 ) ξ [ p 1 2 ( ξ 2 3 ξ + 3 ) + 4 ξ ] 4 ( 4 p 1 2 ) ( 1 | ξ | 2 ) (13)     p 1 ( ξ 1 ) t + ξ ¯ t 2 ( 1 | t | 2 ) ϱ .
for some ξ , t , ϱ with | ξ | 1 , | t | 1 and | ϱ | 1 .

3. Main Results

Theorem 1.
If g R L P , then
| d 2 | 1 4 , | d 3 | 1 6 , | d 4 | 1 8 , | d 5 | 1 10 .
These bounds are sharp.
g 1 ( ε ) = 0 ε ( 1 + s i n t ) d t = ε + 1 4 ε 2 + · · · ,
g 2 ( ε ) = 0 ε ( 1 + s i n t 2 ) d t = ε + 1 6 ε 3 + · · · ,
g 3 ( ε ) = 0 ε ( 1 + s i n t 3 ) d t = ε + 1 8 ε 4 + · · · ,
g 4 ( ε ) = 0 ε ( 1 + s i n t 4 ) d t = ε + 1 10 ε 5 + · · · .
Proof. 
Let g R L P . There exists a Schwartz function w ( ε ) with w ( 0 ) = 0 and | w ( ε ) | < 1 , such that
g ε = 1 + s i n ( w ( ε ) ) .
Define the auxiliary function:
p ( ε ) = 1 + w ( ε ) 1 w ( ε ) = 1 + p 1 ε + p 2 ε 2 + p 3 ε 3 + p 4 ε 4 + · · · .
Clearly, we have p ( ε ) P and
w ( ε ) = p ( ε ) 1 p ( ε ) + 1 = p 1 ε + p 2 ε 2 + p 3 ε 3 + p 4 ε 4 + · · · 2 + p 1 ε + p 2 ε 2 + p 3 ε 3 + p 4 ε 4 + · · · = 1 2 p 1 ε + ( 1 4 p 1 2 + 1 2 p 2 ) ε 2 + ( 1 2 p 1 p 2 + 1 8 p 1 3 + 1 2 p 3 ) ε 3 + ( 1 2 p 4 + 3 8 p 1 2 p 2 1 2 p 1 p 3 1 16 p 1 4 1 4 p 2 2 ) ε 4 + · · · .
As
1 + s i n ( ε ) = 1 + 1 2 ε 1 8 ε 2 1 48 ε 3 + 1 384 ε 4 + · · · .
Putting the value of w ( ε ) in Equation (18), we get
1 + s i n ( w ( ε ) ) = 1 + 1 4 p 1 ε + ( 5 32 p 1 2 + 1 4 p 2 ) ε 2 + ( 1 4 p 3 5 16 p 1 p 2 + 35 384 p 1 3 ) ε 3 + ( 311 6144 p 1 4 5 32 p 2 2 5 16 p 1 p 3 + 35 128 p 1 2 p 2 + 1 4 p 4 ) ε 4 + · · · .
From (1), we achieve
g ( ε ) = 1 + 2 d 2 ε + 3 d 3 ε 2 + 4 d 4 ε 3 + 5 d 5 ε 4 + · · · .
Comparing (19) and (20), we have
d 2 = 1 8 p 1 ,
d 3 = 1 12 ( p 2 5 8 p 1 2 ) ,
d 4 = 1 16 p 3 5 64 p 1 p 2 + 35 1536 p 1 3 ,
a 5 = 1 20 p 4 5 80 p 1 p 3 5 160 p 2 2 + 35 640 p 1 2 p 2 311 30720 p 1 4 ,
From (21) and (22), and applying Lemma 1, we yield | d 2 | 1 4 and | d 3 | 1 6 .
From (23), we can write
| d 4 | = 1 16 | p 3 2 ( 5 8 ) p 1 p 2 + 35 96 p 1 3 | .
By (9), we get L = 5 8 = 0.625 and T = 35 96 = 0.3646 . Clearly, T L , and calculation also shows L ( 2 L 1 ) = 5 32 = 0.15625 T . Then, by Lemma 2, we have
| d 4 | 1 8 .
From (24), we have
| d 5 | = 1 20 | 311 1536 p 1 4 + 5 8 p 2 2 + 2 ( 5 8 ) p 3 p 1 3 2 ( 35 48 ) p 2 p 1 2 p 4 | .
Comparing the right-hand side with (10), we have K = 311 1536 , μ = 5 8 , ζ = 5 8 and v = 35 48 . It can be seen that 0 < ζ < 1 and 0 < μ < 1 and calculations show
8 × 5 8 ( 1 5 8 ) [ ( 5 8 × 35 48 311 768 ) 2 + ( 5 8 ( 5 8 + 5 8 ) 35 48 ) 2 ] + 5 8 ( 1 5 8 ) ( 35 48 5 4 × 5 8 ) 2 = 49815 4718592 = 0.0105572 4 ( 5 8 ) 2 ( 3 8 ) 2 × 5 8 × 3 8 = 3375 65536 = 0.051498 .
Then, by Lemma 3, we have
| d 5 | 1 10 .
Theorem 2.
If g R L P , then
| H 2 , 1 | 1 6 .
The bound is sharp. The sharpness of the inequality can be obtained by the g 2 ( ε ) given in (15).
Proof. 
Let g R L P . From (21), (22), and (2), we get
| d 3 d 2 2 | = 1 12 | p 2 13 16 p 1 2 | .
From Lemma 1, we have
| H 2 , 1 | 1 6 .
Theorem 3.
If g R L P , then
| H 2 , 2 | 1 36 .
The bound is sharp. The sharpness of the inequality can be obtained by (15).
Proof. 
Let g R L P . From (21), (22), (23), and (3), we have
| d 2 d 4 d 3 2 | = 1 36864 | 288 p 1 p 3 40 p 1 2 p 2 + 5 p 1 4 256 p 2 2 | .
Using Lemma 4, we have
| d 2 d 4 d 3 2 | = 1 36864 | 7 p 1 4 4 p 1 2 ( 4 P 1 2 ) ξ 72 p 1 2 ( 4 p 1 2 ) ξ 2 + 144 p 1 ( 4 p 1 2 ) ( 1 | ξ | 2 ) t 64 ( 4 p 1 2 ) 2 ξ 2 | .
Let | p 1 | = p [ 0 , 2 ] , | ξ | = s [ 0 , 1 ] and | t | 1 , and by using triangular inequality, we yield
| d 2 d 4 d 3 2 | 1 36864 [ 7 p 4 + 4 p 2 ( 4 P 2 ) s + 72 p 2 ( 4 p 2 ) s 2 + 144 p ( 4 p 2 ) ( 1 s 2 ) + 64 ( 4 p 2 ) 2 s 2 ] = 1 36864 α ( p , s ) .
For s [ 0 , 1 ] , p [ 0 , 2 ] , we get
α s = 4 p 2 ( 4 p 2 ) + 16 ( 4 p 2 ) ( p 2 18 p + 32 ) s 0 ,
which shows that the maximum of α ( p , s ) occurs at s = 1 . Therefore,
| d 2 d 4 d 3 2 | 1 36864 α ( p , 1 ) = 1 36864 ( 5 p 4 208 p 2 + 1024 ) 1024 36864 = 1 36 .
Theorem 4.
If g R L P , then
| H 2 , 3 ( g ) | = | d 5 d 3 d 4 2 | 1 64
The bound is sharp. The sharpness of the inequality can be obtained by (16).
Proof. 
Let g R L P . From (4), (22), (23), and (24), we achieve
H 2 , 3 ( g ) = 1 11796480 ( 1552 p 1 4 p 2 + 4800 p 1 3 p 3 + 95 p 1 6 + 960 p 1 2 p 2 2 + 49152 p 2 p 4 + 53760 p 1 p 2 p 3 30720 p 1 2 p 4 30720 p 2 3 46080 p 3 2 ) .
Let χ = 4 p 2 , p 1 = p [ 0 , 2 ] in (11), (12), and (13), we have
1552 p 4 p 2 = 776 p 6 776 p 4 χ ξ , 4800 p 3 p 3 = 1200 p 6 + 2400 p 4 χ ξ 1200 p 4 χ ξ 2 + 2400 p 3 χ 1 ξ 2 t , 960 p 2 p 2 2 = 240 p 6 + 480 p 4 χ ξ + 240 p 2 χ 2 ξ 2 , 30720 p 2 p 4 = 3840 p 4 χ ξ 3 + 15360 p 2 χ ξ ¯ t 2 1 ξ 2 + 15360 p 3 χ ξ 1 ξ 2 t + 11520 p 4 χ ξ 2 15360 p 2 χ 1 ξ 2 1 t 2 ϱ 15360 p 3 χ 1 ξ 2 t 11520 p 4 χ ξ 3840 p 6 15360 p 2 χ ξ 2 , 53760 p p 2 p 3 = 6720 p 2 χ 2 ξ 3 6720 p 4 χ ξ 2 + 13440 p ξ χ 2 1 ξ 2 t + 13440 p 2 χ 2 ξ 2 + 13440 p 3 χ 1 ξ 2 t + 6720 p 6 + 20160 p 4 χ ξ , 30720 p 2 3 = 3840 χ 3 ξ 3 11520 p 2 χ 2 ξ 2 11520 p 4 χ ξ 3840 p 6 , 49152 p 2 p 4 = 3072 p 6 + 3072 p 4 χ ξ 3 9216 p 4 χ ξ 2 + 12288 p 4 χ ξ + 12288 p 2 χ ξ 2 12288 p 3 χ ξ ( 1 | ξ | 2 ) t + 12288 p 3 χ ( 1 | ξ | 2 ) t 12288 p 2 χ ( 1 | ξ | 2 ) ξ ¯ t 2 + 12288 p 2 χ ( 1 | ξ | 2 ) ( 1 | t | 2 ) ϱ + 3072 p 2 χ 2 ξ 4 9216 p 2 χ 2 ξ 3 + 9216 p 2 χ 2 ξ 2 + 12288 χ 2 ξ 3 + 12288 p χ 2 ξ t ( 1 | ξ | 2 ) 12288 χ 2 ( 1 | ξ | 2 ) ξ ξ ¯ t 2 + 12288 χ 2 ξ ( 1 | ξ | 2 ) ( 1 | t | 2 ) ϱ 12288 p χ 2 ξ 2 t ( 1 | ξ | 2 ) , 46080 p 3 2 = 2880 p 6 11520 p 4 χ ξ 11520 p 2 χ 2 ξ 2 + 5760 p 4 χ ξ 2 11520 p 3 χ ( 1 | ξ | 2 ) t + 11520 p 2 χ 2 ξ 3 23040 p ξ χ 2 ( 1 | ξ | 2 ) t 2880 p 2 χ 2 ξ 4 + 11520 p χ 2 ξ 2 ( 1 | ξ | 2 ) t 11520 χ 2 t 2 ( 1 | ξ | 2 ) 2 .
Substituting these expressions into (26), we obtain
H 2 , 3 g = 1 11796480 [ 9 p 6 + 12288 χ 2 ξ 3 + 192 p 2 χ 2 ξ 4 + 144 p 4 χ ξ 2 144 p 2 χ 2 ξ 2 4416 p 2 χ 2 ξ 3 768 p 4 χ ξ 3 3072 p 2 χ ξ 2 3840 χ 3 ξ 3 + 2688 p χ 2 ξ ( 1 | ξ | 2 ) t + 3072 p 3 ξ ( 1 | ξ | 2 ) χ t + 3072 p 2 ( 1 | ξ | 2 ) χ ξ ¯ t 2 3072 p 2 ( 1 | ξ | 2 ) ( 1 | t | 2 ) χ ϱ 768 p χ 2 ξ 2 ( 1 | ξ | 2 ) t 12288 χ 2 ( 1 | ξ | 2 ) ξ ξ ¯ t 2 8 χ ξ p 4 + 12288 χ 2 ξ ( 1 | ξ | 2 ) ( 1 | t | 2 ) ϱ 11520 χ 2 t 2 ( 1 | ξ | 2 ) 2 + 1248 χ p 3 ( 1 | ξ | 2 ) t ] .
Thus, we achieve
H 2 , 3 g = 1 11796480 1 p , ξ + 2 p , ξ t + 3 p , ξ t 2 + Υ 1 p , ξ , t ϱ ,
where
1 p , ξ = 9 p 6 + 4 p 2 4 p 2 144 p 2 ξ 2 576 p 2 ξ 3 3072 ξ 3 + 192 p 2 ξ 4 8 p 4 ξ 768 p 4 ξ 3 + 16 p 2 ( 9 p 2 192 ) ξ 2 , 2 p , ξ = 4 p 2 1 ξ 2 2688 p ξ 768 p ξ 2 4 p 2 + 1248 p 3 + 3072 p 3 ξ , 3 p , ξ = 4 p 2 1 ξ 2 768 ξ 2 11520 4 p 2 + 3072 ξ ¯ p 2 , Υ 1 p , ξ , t = 4 p 2 1 ξ 2 1 t 2 12288 ξ 4 p 2 3072 p 2 .
Let | p | = p | ξ | = s , | t | = t and ρ 1 , then
H 3 , 1 g 1 11796480 1 p , ξ + 2 p , ξ t + 3 p , ξ t 2 + Υ 1 p , ξ , t 1 11796480 Γ 1 p , s , t ,
where
Γ 1 p , s , t = τ 1 p , s + τ 2 p , s t + τ 3 p , s t 2 + τ 4 p , s ( 1 t 2 ) ,
with
τ 1 p , s = 9 p 6 + 4 p 2 4 p 2 144 p 2 s 2 + 576 p 2 s 3 + 3072 s 3 + 192 p 2 s 4 + 8 p 4 s + 768 p 4 s 3 + 16 p 2 ( 192 9 p 2 ) s 2 , τ 2 p , s = 4 p 2 1 s 2 2688 p s + 768 p s 2 4 p 2 + 1248 p 3 + 3072 p 3 s , τ 3 p , s = 1 s 2 4 p 2 768 s 2 + 11520 4 p 2 + 3072 p 2 s
and
τ 4 p , s = 4 p 2 1 s 2 12288 s 4 p 2 + 3072 p 2 .
In light of ( p , s ) [ 0 , 2 ] × [ 0 , 1 ] , we observe that
τ 3 p , s ( 4 p 2 ) ( 1 s 2 ) [ ( 4 p 2 ) ( 11520 + 768 s 2 ) + 3072 p 2 ] = ς 3 ( p , s ) .
Taking ς j ( p , s ) = τ j ( p , s ) for j = 1 , 2 , 4 and
Ξ 1 p , s , t = ς 1 ( p , s ) + ς 2 ( p , s ) t + ς 3 ( p , s ) t 2 + ς 4 ( p , s ) ( 1 t 2 ) .
By partially differentiating Ξ 1 p , s , t with respect to t, we yield
Ξ 1 t = ς 2 ( p , s ) + 2 ( ς 3 ( p , s ) ς 4 ( p , s ) ) t = ς 2 ( p , s ) + 1536 t ( 4 p 2 ) 2 ( 1 s 2 ) ( s 2 16 s + 15 ) 0 ,
which confirms that Ξ 1 p , s , t is a decreasing function for t [ 0 , 1 ] . Therefore,
Γ 1 ( p , s , t ) Ξ 1 p , s , t Ξ 1 p , s , 1 = ς 1 ( p , s ) + ς 2 ( p , s ) + ς 3 ( p , s ) = 184320 79872 p 2 + 4992 p 3 + 8448 p 4 1248 p 5 + 9 p 6 + ( 43008 p 9216 p 3 + 32 p 4 384 p 5 8 p 6 ) s + ( 184320 + 12288 p + 106752 p 2 11136 p 3 19392 p 4 + 2016 p 5 + 1056 p 6 ) s 2 + ( 49152 43008 p 15360 p 2 + 9216 p 3 + 1536 p 4 + 384 p 5 192 p 6 ) s 3 + ( 12288 p 9216 p 2 + 6144 p 3 + 4608 p 4 768 p 5 576 p 6 ) s 4 = Δ 1 ( p , s ) .
The optimal points of Δ 1 satisfy
Δ 1 p = 159744 p + 14976 p 2 + 33792 p 3 6240 p 4 + 54 p 5 + ( 43008 27648 p 2 + 128 p 3 1920 p 4 48 p 5 ) s + ( 12288 + 213504 p 33408 p 2 77568 p 3 + 10080 p 4 + 6336 p 5 ) s 2 + ( 43008 30720 p + 27648 p 2 + 6144 p 3 + 1920 p 4 1152 p 5 ) s 3 + ( 12288 18432 p + 18432 p 2 + 18432 p 3 3840 p 4 3456 p 5 ) s 4 = 0 , Δ 1 s = 8 p 6 384 p 5 + 32 p 4 9216 p 3 + 43008 p + ( 368640 + 24576 p + 213504 p 2 22272 p 3 38784 p 4 + 4032 p 5 + 2112 p 6 ) s + ( 147456 129024 p 46080 p 2 + 27648 p 3 + 4608 p 4 + 1152 p 5 576 p 6 ) s 2 + ( 49152 p 36864 p 2 + 24576 p 3 + 18432 p 4 3072 p 5 2304 p 6 ) s 3 = 0 .
After computations, we get
p 1 = 2 , s 1 = 1.3830 , p 2 = 2 , s 2 = 1.5582 , p 3 = 2 , s 3 = 0.8248 , p 4 = 2 , s 4 = 0.6692 , p 5 = 2 , s 5 = 0.9569 , p 6 = 2 , s 6 = 0.0793 , p 7 = 0 , s 7 = 0 , p 8 = 5.0639 , s 8 = 0.0931 , p 9 = 110.1957 , s 9 = 0.0054 , p 10 = 0.4967 , s 10 = 16.1109 , p 11 = 1.0196 , s 11 = 1.0578 , p 12 = 1.7382 , s 12 = 61.2047 , p 13 = 1.9518 , s 13 = 0.4220 , p 14 = 2.1965 , s 14 = 0.6427 , p 15 = 3.1462 , s 15 = 1.4645 .
(1) For p = 2 ,
Δ 1 ( 2 , s ) = 576 .
(2) For p = 0 ,
Δ 1 ( 0 , s ) = 184320 184320 s 2 + 49152 s 3 184320 .
(3) For s = 1 ,
Δ 1 ( p , 1 ) = 49152 + 2304 p 2 4768 p 4 + 289 p 6 = δ 1 ( p ) δ 1 ( 0.4972 ) = 49435 .
(4) For s = 0 ,
Δ 1 ( p , 0 ) = 9 p 6 1248 p 5 + 8448 p 4 + 4992 p 3 79872 p 2 + 184320 184320 .
Thus, we have
| H 2 , 3 | 184320 11796480 = 1 64 .
Theorem 5.
If g R L P , then
| H 3 , 1 ( g ) | 1 64 .
The bound is sharp. The sharpness of the inequality can be obtained by the g 3 ( ε ) given in (16).
Proof. 
Let g R L P . From (5), (21), (22), (23), and (24), we get
H 3 , 1 = 1 35389440 ( 207360 p 1 p 2 p 3 + 960 p 1 2 p 2 2 6096 p 1 4 p 2 138240 p 3 2 + 20160 p 1 3 p 3 112640 p 2 3 119808 p 1 2 p 4 + 383 p 1 6 + 147456 p 2 p 4 ) .
Let p 1 = p [ 0 , 2 ] χ = 4 p 2 in (11), (12), and (13), we achieve
6096 p 4 p 2 = 3048 p 6 3048 p 4 ξ χ , 20160 p 3 p 3 = 5040 p 6 + 10080 ξ p 4 χ 5040 p 4 ξ 2 χ + 10080 p 3 χ t 1 ξ 2 , 960 p 2 p 2 2 = 480 p 4 ξ χ + 240 p 6 + 240 p 2 ξ 2 χ 2 , 119808 p 2 p 4 = 14976 p 4 χ ξ 3 + 59904 χ p 2 ξ ¯ 1 ξ 2 t 2 + 59904 ξ p 3 χ 1 ξ 2 t + 44928 p 4 ξ 2 χ 59904 χ p 2 1 t 2 1 ξ 2 ϱ 15360 p 3 χ 1 ξ 2 t 44928 ξ p 4 χ 14976 p 6 59904 χ p 2 ξ 2 , 207360 p p 2 p 3 = 25920 ξ 3 p 2 χ 2 25920 p 4 ξ 2 χ + 51840 χ 2 p ξ 1 ξ 2 t + 51840 ξ 2 χ 2 p 2 + 51840 χ p 3 t 1 ξ 2 + 25920 p 6 + 77760 ξ p 4 χ , 112640 p 2 3 = 14080 ξ 3 χ 3 42240 ξ 2 p 2 χ 2 14080 p 6 42240 p 4 χ ξ , 147456 p 2 p 4 = 9216 χ p 4 ξ 3 27648 p 4 ξ 2 χ + 36864 χ p 4 ξ + 36864 χ p 2 ξ 2 + 9216 p 6 36864 p 3 ξ χ ( 1 | ξ | 2 ) t + 36864 χ p 3 ( 1 | ξ | 2 ) t 36864 χ p 2 ( 1 | ξ | 2 ) ξ ¯ t 2 + 36864 p 2 χ ( 1 | ξ | 2 ) ( 1 | t | 2 ) ϱ + 9216 p 2 ξ 4 χ 2 27648 χ 2 p 2 ξ 3 + 27648 ξ 2 p 2 χ 2 + 36864 χ 2 ξ 3 + 36864 p ξ χ 2 t ( 1 | ξ | 2 ) 36864 ( 1 | ξ | 2 ) ξ ξ ¯ χ 2 t 2 + 36864 χ 2 ( 1 | ξ | 2 ) ( 1 | t | 2 ) ξ ϱ 36864 χ 2 p ξ 2 t ( 1 | ξ | 2 ) , 138240 p 3 2 = 34560 ξ p 4 χ 34560 χ 2 p 2 ξ 2 + 17280 p 4 χ ξ 2 34560 p 3 ( 1 | ξ | 2 ) χ t 8640 p 6 + 34560 p 2 ξ 3 χ 2 69120 χ 2 ξ p ( 1 | ξ | 2 ) t 8640 p 2 ξ 4 χ 2 + 34560 χ 2 p ξ 2 ( 1 | ξ | 2 ) t 34560 t 2 χ 2 ( 1 | ξ | 2 ) 2 .
Substituting these expressions into (26), we obtain
H 3 , 1 g = 1 35389440 [ 576 p 2 χ 2 ξ 4 + 55 p 6 + 36864 χ 2 ξ 3 + 3600 χ p 4 ξ 2 + 2928 χ 2 ξ 2 p 2 19008 ξ 3 p 2 χ 2 5760 χ p 4 ξ 3 23040 p 2 ξ 2 χ 14080 χ 3 ξ 3 + 19584 χ 2 p ( 1 | ξ | 2 ) ξ t + 23040 ( 1 | ξ | 2 ) ξ p 3 χ t + 23040 p 2 ( 1 | ξ | 2 ) ξ ¯ χ t 2 23040 p 2 ( 1 | t | 2 ) χ ( 1 | ξ | 2 ) ϱ 23040 p χ 2 t ξ 2 ( 1 | ξ | 2 ) 36864 ξ ξ ¯ χ 2 ( 1 | ξ | 2 ) t 2 + 408 ξ p 4 χ + 36864 χ 2 ( 1 | t | 2 ) ξ ( 1 | ξ | 2 ) ϱ 34560 χ 2 ( 1 | ξ | 2 ) 2 t 2 + 4320 p 3 χ ( 1 | ξ | 2 ) t ] .
It is seen that we can write H 3 , 1 g in the form of
H 3 , 1 g = 1 35389440 [ 4 ( p , ξ ) + 5 ( p , ξ ) t + 6 ( p , ξ ) t 2 + Υ 2 ( p , ξ , t ) ϱ ] ,
where ξ , t , ϱ U ¯ , and
4 p , ξ = 55 p 6 + ( 4 p 2 ) [ ( 576 p 2 ξ 4 19456 ξ 3 4928 p 2 ξ 3 + 2928 p 2 ξ 2 ) ( 4 p 2 ) + 408 p 4 ξ 5760 p 4 ξ 3 + 720 p 2 ( 5 p 2 32 ) ξ 2 ]
5 p , ξ = 4 p 2 1 ξ 2 19584 p ξ 2304 ξ 2 p 4 p 2 + 4320 p 3 + 23040 p 3 ξ , 6 p , ξ = 4 p 2 1 ξ 2 2304 ξ 2 34560 4 p 2 + 23040 ξ ¯ p 2 , Υ 2 p , ξ , t = 1 t 2 4 p 2 1 ξ 2 36864 4 p 2 ξ 23040 p 2 .
Let | t | = t , | ξ | = s and ρ 1 , then we have
H 3 , 1 g 1 35389440 4 p , ξ + 5 p , ξ t + 6 p , ξ t 2 + Υ 2 p , ξ , t 1 35389440 Γ 2 p , s , t ,
where
Γ 2 p , s , t = τ 5 p , s + τ 6 p , s t + τ 7 p , s t 2 + τ 8 p , s ( 1 t 2 ) ,
with
τ 5 p , s = 55 p 6 + 4 p 2 4 p 2 2928 s 2 p 2 + 4928 s 3 p 2 + 19456 s 3 + 576 s 4 p 2 + 408 p 4 s + 5760 p 4 s 3 + 720 p 2 ( 32 5 p 2 ) s 2 , τ 6 p , s = 4 p 2 1 s 2 19584 s p + 2304 p s 2 4 p 2 + 4320 p 3 + 23040 s p 3 , τ 7 p , s = 1 s 2 4 p 2 2304 s 2 + 34560 4 p 2 + 23040 s p 2
and
τ 8 p , s = 1 s 2 4 p 2 36864 s 4 p 2 + 23040 p 2 .
In light of ( p , s ) [ 0 , 2 ] × [ 0 , 1 ] , we observe that
τ 7 p , s ( 4 p 2 ) ( 1 s 2 ) [ ( 4 p 2 ) ( 34560 + 2304 s 2 ) + 23040 p 2 ] = λ 7 ( p , s ) .
Taking λ j ( p , s ) = τ j ( p , s ) for j = 5 , 6 , 8 and
Ξ 2 p , s , t = λ 5 ( p , s ) + λ 6 ( p , s ) t + λ 7 ( p , s ) t 2 + λ 8 ( p , s ) ( 1 t 2 ) .
By partially differentiating Ξ 2 p , s , t with respect to t, we have
Ξ 2 t = λ 6 ( p , s ) + 2 ( λ 7 ( p , s ) λ 8 ( p , s ) ) t = λ 6 ( p , s ) + 4608 ( s 2 16 s + 15 ) ( 4 p 2 ) 2 ( 1 s 2 ) t 0 .
It follows that
Γ 2 ( p , s , t ) Ξ 2 p , s , t Ξ 2 p , s , 1 = λ 5 ( p , s ) + λ 6 ( p , s ) + λ 7 ( p , s ) = 552960 184320 p 2 + 17280 p 3 + 11520 p 4 4320 p 5 + 55 p 6 + ( 313344 p 64512 p 3 + 1632 p 4 3456 p 5 408 p 6 ) s + ( 516096 + 36864 p + 304896 p 2 35712 p 3 70080 p 4 + 6624 p 5 + 6528 p 6 ) s 2 + ( 311296 313344 p 76800 p 2 + 64512 p 3 + 3072 p 4 + 3456 p 5 832 p 6 ) s 3 + ( 36864 36864 p + 27648 p 2 + 18432 p 3 6912 p 4 2304 p 5 + 576 p 6 ) s 4 = Δ 2 ( p , s ) .
The optimal points of Δ 2 satisfy
Δ 2 p = 368640 p + 51840 p 2 + 46080 p 3 21600 p 4 + 330 p 5 + ( 313344 193536 p 2 + 6528 p 3 17280 p 4 2448 p 5 ) s + ( 36864 + 609792 p 107136 p 2 280320 p 3 + 33120 p 4 + 39168 p 5 ) s 2 + ( 313344 153600 p + 193536 p 2 + 12288 p 3 + 17280 p 4 4992 p 5 ) s 3 + ( 36864 + 55296 p + 55296 p 2 27648 p 3 11520 p 4 + 3456 p 5 ) s 4 = 0 , Δ 2 s = 408 p 6 3456 p 5 + 1632 p 4 64512 p 3 + 313344 p + ( 1032192 + 73728 p + 609792 p 2 71424 p 3 140160 p 4 + 13248 p 5 + 13056 p 6 ) s + ( 933888 940032 p 230400 p 2 + 193536 p 3 + 9216 p 4 + 10368 p 5 2496 p 6 ) s 2 + ( 147456 147456 p + 110592 p 2 + 73728 p 3 27648 p 4 9216 p 5 + 2304 p 6 ) s 3 = 0 .
After computations, we get
p 1 = 2 , s 1 = 1.3264 , p 2 = 2 , s 2 = 1.7446 , p 3 = 2 , s 3 = 0.5818 , p 4 = 2 , s 4 = 0.6031 , p 5 = 2 , s 5 = 0.8901 , p 6 = 2 , s 6 = 0.3703 , p 7 = 0 , s 7 = 0 , p 8 = 2.5990 , s 8 = 9.9401 , p 9 = 73.7241 , s 9 = 0.0346 , p 10 = 0.3492 , s 10 = 0.9567 , p 11 = 1.4612 , s 11 = 36.5653 , p 12 = 1.9795 , s 12 = 0.4924 , p 13 = 2.5160 , s 13 = 0.4322 .
(5) For p = 2 ,
Δ 2 ( 2 , s ) = 3520 .
(6) For p = 0 ,
Δ 2 ( 0 , s ) = 552960 516096 s 2 + 311296 s 3 36864 s 4 552960 .
(7) For s = 1 ,
Δ 2 ( p , 1 ) = 311296 + 71424 p 2 60768 p 4 + 5919 p 6 = δ 2 ( p ) δ 2 ( 0.8058 ) = 333670 .
(8) For s = 0 ,
Δ 2 ( p , 0 ) = 55 p 6 4320 p 5 + 11520 p 4 + 17280 p 3 184320 p 2 + 552960 552960 .
Thus, we have
| H 3 , 1 | 552960 35389440 = 1 64 .

Author Contributions

Methodology, C.W.; Validation, Z.D.; Writing—original draft, D.G.; Visualization, J.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by The 2023 Jiangsu Provincial Science and Technology Deputy Director Program, grant number FZ20231182, FZ20231166, and by General Program of Natural Science Research (Self-funded) for Higher Education Institutions (Jiangsu Provincial Department of Education), grant number ZM202403344).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Acknowledgments

We would like to express our gratitude for the support from the 2023 Jiangsu Provincial Science and Technology Deputy Director Program and General Program of Natural Science Research (Self-funded) for Higher Education Institutions (Jiangsu Provincial Department of Education), and we thank the referees for their time and comments.

Conflicts of Interest

There are no conflicts of interest to declare.

References

  1. Khan, M.G.; Mashwani, W.K.; Shi, L.; Araci, S.; Ahmad, B.; Khan, B. Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Math. 2023, 8, 21993–22008. [Google Scholar] [CrossRef]
  2. Wang, Z.G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp Bounds On Hankel Determinants for Certain Subclass of Starlike Functions. J. Appl. Anal. Comput. 2022, 13, 860–873. [Google Scholar] [CrossRef] [PubMed]
  3. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
  4. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
  5. Răducanu, D. On Coefficient Estimates for a Certain Class of Analytic Functions. Mathematics 2022, 11, 12. [Google Scholar] [CrossRef]
  6. Orhan, H.; Toklu, E.; Kadıoğlu, E. Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials. Turk. J. Math. 2018, 42, 1927–1940. [Google Scholar] [CrossRef]
  7. Tang, H.; Arif, M.; Abbas, M.; Tawfiq, F.M.; Malik, S.N. Analysis of Coefficient-Related Problems for Starlike Functions with Symmetric Points Connected with a Three-Leaf-Shaped Domain. Symmetry 2023, 15, 1837. [Google Scholar] [CrossRef]
  8. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  9. Wen, C.; Li, Z.; Guo, D. Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions. Mathematics 2024, 12, 1875. [Google Scholar] [CrossRef]
  10. Liu, D.; Ahmad, A.; Ikhlas, H.; Hussain, S.; Noor, S.; Tang, H. On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions. Axioms 2025, 14, 191. [Google Scholar] [CrossRef]
  11. Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
  12. Libera, R.J.; Zlotkiewicz, E. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
  13. Ravichandran, V.; Verma, V.S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
  14. Rlibera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
  15. Kwon, O.S.; Lecho, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wen, C.; Guo, D.; Diao, Z.; Huang, J. The Sharp Coefficients and Hankel Determinants for a Novel Class RLP. Symmetry 2025, 17, 1668. https://doi.org/10.3390/sym17101668

AMA Style

Wen C, Guo D, Diao Z, Huang J. The Sharp Coefficients and Hankel Determinants for a Novel Class RLP. Symmetry. 2025; 17(10):1668. https://doi.org/10.3390/sym17101668

Chicago/Turabian Style

Wen, Chuanjun, Dong Guo, Zhongcan Diao, and Jinchao Huang. 2025. "The Sharp Coefficients and Hankel Determinants for a Novel Class RLP" Symmetry 17, no. 10: 1668. https://doi.org/10.3390/sym17101668

APA Style

Wen, C., Guo, D., Diao, Z., & Huang, J. (2025). The Sharp Coefficients and Hankel Determinants for a Novel Class RLP. Symmetry, 17(10), 1668. https://doi.org/10.3390/sym17101668

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop