Next Article in Journal
Multiplicatively Trigonometric Convex Functions for Hermite–Hadamard-Type Inequalities
Previous Article in Journal
Variable Fractional-Order Dynamics in Dark Matter–Dark Energy Chaotic System: Discretization, Analysis, Hidden Dynamics, and Image Encryption
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making

by
Norah Rabeah Alrabeah
and
Kholood Mohammad Alsager
*
Department of Mathematics, College of Sciences, Qassim University, Buraydah 51411, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(10), 1656; https://doi.org/10.3390/sym17101656
Submission received: 8 July 2025 / Revised: 21 August 2025 / Accepted: 1 September 2025 / Published: 5 October 2025
(This article belongs to the Section Mathematics)

Abstract

The concept of Multi Q-Fermatean hesitant fuzzy soft sets (MQFHFSS), derived from the integration of multi-Q fuzzy soft sets and Fermatean hesitant fuzzy sets, can be applied in practice to optimise the resolution of complex multi-criteria decision-making problems. The method exceeds traditional approaches such as Fermatean hesitant fuzzy sets, fuzzy soft sets, and Pythagorean fuzzy sets in enhancing the ability to capture higher levels of uncertainty, hesitation, and symmetry in multi-criteria evaluations, thereby supporting more balanced judgments in complex decision-making situations. In this study, we investigate the novel MQFHFSS concept along with the associated operations. The fundamental characteristics of aggregation operators derived from MQFHFSS have been examined to address some complex decision-making issues. Moreover, we discuss some key algebraic features and their different cases, emphasizing the role of symmetry under the influence of MQFHFSS. Finally, we illustrate some numerical examples and solve the real-world decision-making problem by using the proposed technique.

1. Introduction

Most contemporary issues [1] in health, engineering as a career, and social disciplines involve information that is inaccurate and unclear due to ambiguity. Techniques used in classical mathematics have become unproductive due to the involvement of various types of uncertainty. In 1995, Zadeh [2] established the concept of making linguistic terms computable, that is, the concept of the fuzzy set (FS), explaining that its basic component is the membership degree ( MD ) belonging to the range [0, 1]. However, this does not clarify the confusion in many matters. Atanassov [3] expanded the idea of the fuzzy set to the intuitionistic fuzzy set ( IFS ) [4], containing a degree of ( MD ) and degree of non-membership function (ND). They belong to the range [0, 1], provided that the sum of the two grades does not exceed one. Yager proposed an eternalized form named the Pythagorean fuzzy set ( PFS ) [5] under the concept that the sum of the squares of the degree of MD and ND is less than or equal to one. The Fermatean fuzzy set ( FFS ) [6] was proposed by [7] as a superior approach to IFS and PFS ; here, the cubic sum of MD and ND is less than or equal to one. Since 2009, researchers have begun to investigate whether the MD and ND of a set is a subset of [0, 1]. Hence, lTora and Narukawa [8] established the initial approach of the HFS , which we benefit from in cases of hesitation in determining the MD or ND of an element in a group. The concept of the FFS has been generalized to HFS [9,10] to study hesitant cases under the conditions of FFS , which can more precisely represent individuals’ hesitance to articulate their preferences through item selection. The concept of the multi-Q FS integrated with the Fermatean hesitant set [7,11,12,13] provides a more accurate and flexible representation of uncertainties. However, each of these sets has its own difficulties; thus, Adam and Hassan [14] proposed the soft set [15] as a new difficulty-free concept for dealing with uncertainty, characterized by the absence of any condition to describe the objects as in the fuzzy set. This makes it easier for the researcher to choose the parameter needed to make the decision. Adam et al. introduced the novel notion of the Q-fuzzy soft set ( FSS ), which combines the Q-FS [16] and the soft set. They then developed this into the multi-Q SFS [17,18,19], explored its features, and used it in decision-making [20]. Korucuk and Aytekin’s use of interval-valued Fermatean fuzzy sets within the SWARA framework enables a more precise and flexible evaluation of logistics criteria and enhances decision-making power [21]. Additionally, it allows for a thorough evaluation of anti-corruption strategies in the face of uncertainty. This method was successful in prioritising governance reforms that are vital to increasing transparency and accountability [22,23].
While some decisions are made intuitively, complex situations often require more rigorous approaches. Hence, decision-making processes arise when a person or institution must select the most appropriate option under given conditions. In this context, the present study introduces a combination of the multi-Q FSS and FHFS , incorporating symmetry in their algebraic structures to enhance the effectiveness of decision-making.
  • Motivation and contribution:
    1.
    Yager [7] developed the FS concept. The primary stipulation in this set theory is that the aggregate of MD and ND must not surpass 1. Building on this idea, we delineate and investigate the various characteristics of FFS .
    2.
    Torra [24] expanded the FS notion to incorporate the hesitant FS model. The challenge in constructing the MD can be addressed when it stems from indecision among certain values instead of from a margin of error or a particular allocation of chance of the probable values [25]. Adam provided the initial MQFSS concept and discussed the application of such sets in decision-making.
    3.
    Our proposed MQFHFSS concept is derived from the integration of MQFSS and FHFS , and can be applied in practice to streamline the resolution of complicated multi-criteria DM challenges. The fundamental characteristics of aggregation operators derived from MQFHFSS have been examined, highlighting their inherent symmetry; in addition, numerical examples are illustrated to solve real-world decision-making problems using the proposed technique.
The thesis is arranged as follows. In Section 2, we establish the definition of the multi- FHFS and operations on it as well as its properties. In Section 3, we expand on MQFHFSS , including the concept and many of its theories and propositions. Finally, in Section 4 we focus on applications of MQFHFSS in DM processes, explaining the results that can be achieved using this set.

2. Preliminaries

Definition 1 
([11]). The following set
F H = ( u , U F H ( u ) , V F H ( u ) ) u U
is known as FHFS , where:
1. 
Every entity u U , U F H ( u ) , V F H ( u ) is transformed from U to [ 0 ,   1 ] , illustrating a realistic MD and ND of entity u U in F H , respectively.
2. 
μ F H ( u ) U F H ( u ) , v F H ( u ) V F H ( u ) , such that
0 μ F H 3 ( u ) + v F H 3 ( u ) 1
.
3. 
v F H ( u ) V F H ( u ) , μ F H ( u ) U F H ( u ) ; therefore,
0 μ F H 3 ( u ) + v F H 3 ( u ) 1
.
Definition 2 
([15]). A pair ( F , A ) is known as a soft set across U, while F is a transformation. In other words, a soft-set over U is a function from attributes to P ( U ) , which is the power set of U.
Definition 3.
Suppose that X is a fixed set and Q . Then, a Q- FHFS   F in X can be described as follows:
F = { ( m , ϱ ) , U ( m , ϱ ) , V ( m , ϱ ) m X , ϱ Q } .
Therefore, U ( m , ϱ ) and V ( m , ϱ ) are functions from X × Q to [ 0 , 1 ] and denote the set of alternatives MD and ND of X to F, respectively:
μ ( m , ϱ ) U ( m , ϱ ) , v ( m , ϱ ) V ( m , ϱ ) and v ( m , ϱ ) V ( m , ϱ ) ,
μ ( m , ϱ ) U ( m , ϱ ) s . t . 0 μ 3 ( m , ϱ ) + v 3 ( m , ϱ ) 1 .

3. Multi-Q Fermatean Hesitant Fuzzy Set

Definition 4.
Suppose that I is an interval [ 0 ,   1 ] , k is a positive integer, X is a set of discourse, and Q is a non-empty set.
Then, an MK QFHFS   F Q can be described as follows:
F Q = { ( m , ϱ ) , U ( m , ϱ ) , V ( m , ϱ ) ( m X , ϱ Q }
where U ( m , ϱ ) and V ( m , ϱ ) are finite subsets on [ 0 ,   1 ] and denote all existing MD and ND , respectively, μ i ( m , ϱ ) U ( m , ϱ ) , v i ( m , ϱ ) V ( m , ϱ ) and v i ( m , ϱ ) V ( m , ϱ ) , μ i ( m , ϱ ) U ( m , ϱ ) s . t .
Here, μ i : X × Q I k are the MD s of the multi-Q FHFS   F Q , while  v i : X × Q I k are the ND s of the multi-Q FHFS   F Q satisfying 0 μ i 3 ( m , ϱ ) + v i 3 ( m , ϱ ) 1 for i = 1 , . . . , k , where k has a dimension of F Q .
Example 1.
Let X = { x 1 , x 2 , x 3 , x 4 } be set of discourse, Q = { q , p } , and k = 2 be a positive integer. If  F Q is a mapping from
X × Q I 2 , then the set
F Q = ( x 1 , q ) , ( { 0.31 , 0.51 } ) , ( { 0.15 , 0.42 } ) ( x 3 , p ) , ( { 0.14 , 0.22 } ) , ( { 0.12 , 0.14 } )
is a multi-Q FHFS .

3.1. Operations on Multi-Q Fermatean Hesitant Fuzzy Sets

Let Θ and Φ be two M k - QFHFS and let λ > 0 . Then:
(a)
Θ Φ = ( x , ς ) , max ( μ i Θ ( x , ς ) , μ i Φ ( x , ς ) ) , min ( v i Θ ( x , ς ) , v i Φ ( x , ς ) )
(b)
Θ Φ = ( x , ς ) , min ( μ i Θ ( x , ς ) , μ i Φ ( x , ς ) ) , max ( v i Θ ( x , ς ) , v i Φ ( x , ς ) )
(c)
λ Θ = μ i U Θ 1 ( 1 μ i 3 ) λ 3 , v i V Θ v i λ
(d)
Θ λ = μ i U Θ μ i λ , v i V Θ 1 ( 1 v i 2 ) λ 3 .
Theorem 1.
Suppose that F Q is an M k - QFHFS ; then, the complement of F Q is represented by F Q c and defined as follows:
F Q c = ( m , k ) , U c ( m , k ) , V c ( m , k ) = ( m , k ) , v i ( m , k ) V ( m , k ) { v i ( m , k ) } , μ i ( m , k ) U ( m , k ) { μ i ( m , k ) }
such that
0 μ i ( m , k ) 3 , v i ( m , k ) 3 1 .
Proof. 
F Q = ( m , k ) , U ( m , k ) , V ( m , k ) = ( m , k ) , μ i ( m , k ) U ( m , k ) { μ i ( m , k ) } , v i ( m , k ) V ( m , k ) { v i ( m , k ) } c = ( m , k ) , v i ( m , k ) V ( m , k ) { v i ( m , k ) } , μ i ( m , k ) U ( m , k ) { μ i ( m , k ) } = F Q c
Definition 5.
Let Θ and Φ be two multi-Q FHFS ; then:
(1) 
Θ Φ is defined as
Θ Φ = μ i Θ ( m , k ) U Θ ( m , k ) , μ i Φ ( m , k ) U Φ ( m , k ) μ i Θ 3 + μ i Φ 3 μ i Θ 3 μ i Φ 3 3 , v i Θ ( m , k ) V Θ ( m , k ) , v i Φ ( m , k ) V Φ ( m , k ) v i Θ v i Φ .
(2) 
Θ Φ is defined as
Θ Φ = μ i Θ ( m , k ) U Θ ( m , k ) , μ i Φ ( m , k ) U Φ ( m , k ) μ i Θ μ i Φ , v i Θ ( m , k ) V Θ ( m , k ) , v i Φ ( m , k ) V Φ ( m , k ) v i Θ 3 + v i Φ 3 v i Θ 3 v i Φ 3 3 .

3.2. Properties of Multi-Q Fermatean Hesitant Fuzzy Sets

Proposition 1.
Let Θ and Φ be two M- QFHFS ; then:
(1) 
Θ Φ = Φ Θ
(2) 
Θ Φ = Φ Θ
(3) 
λ ( Θ Φ ) = λ Θ λ Φ , where λ > 0
(4) 
( λ 1 + λ 2 ) Θ = λ 1 Θ λ 2 Θ , where λ 1 ,   λ 2 > 0
(5) 
( Θ Φ ) λ = Θ λ Φ λ , where λ > 0
(6) 
Θ ( λ 1 + λ 2 ) = Θ λ 1 Θ λ 2 , where λ 1 ,   λ 2 > 0 .
Proof.  
(1)
Θ Φ = μ i Θ U Θ , μ i Φ U Φ μ i Θ 3 + μ i Φ 3 μ i Θ 3 μ i Φ 3 3 , v i Θ V Θ , v i Φ V Φ { v i Θ v i Φ } = μ i Φ U Φ , μ i Θ U Θ μ i Φ 3 + μ i Θ 3 μ i Φ 3 μ i Θ 3 3 , v i Φ V Φ , v i Θ V Θ { v i Φ v i Θ } = Φ Θ
(2)
Θ Φ = μ i Θ U Θ , μ i Φ U Φ μ i Θ μ i Φ , v i Θ V Θ , v i Φ V Φ v i Θ 3 + v i Φ 3 v i Θ 3 v i Φ 3 3 = μ i Φ U Φ , μ i Θ U Θ μ i Φ μ i Θ , v i Φ V Φ , v i Θ V Θ v i Φ 3 + v i Θ 3 v i Φ 3 v i Θ 3 3 = Φ Θ
(3)
λ ( Θ Φ ) = λ μ i Θ U Θ , μ i Φ U Φ μ i Θ 3 + μ i Φ 3 μ i Θ 3 μ i Φ 3 3 , v i Θ V Θ , v i Φ V Φ { v i Θ v i Φ } = μ i Θ U Θ , μ i Φ U Φ 1 ( 1 μ i Θ 3 μ i Φ 3 + μ i Θ 3 μ i Φ 3 ) λ 3 , v i Θ V Θ , v i Φ V Φ { v i Θ v i Φ } λ
λ Θ λ Φ = μ i Θ U Θ 1 ( 1 μ i Θ 3 ) λ 3 , v i Θ V Θ { v i Θ } λ μ i Φ U Φ 1 ( 1 μ i Φ 3 ) λ 3 , v i Φ V Φ { v i Φ } λ = μ i Θ U Θ , μ i Φ U Φ 1 ( 1 μ i Θ 3 ) λ ( 1 μ i Φ 3 ) λ 3 , v i Θ V Θ , v i Φ V Φ { v i Θ v i Φ } λ = λ ( Θ Φ )
(4)
( λ 1 + λ 2 ) Θ = μ i Θ U Θ 1 ( 1 μ i Θ 3 ) λ 1 + λ 2 3 , v i Θ V Θ { v i Θ } λ 1 + λ 2 = μ i Θ U Θ 1 ( 1 μ i Θ 3 ) λ 1 ( 1 μ i Θ 3 ) λ 2 3 , v i Θ V Θ { v i Θ } λ 1 + λ 2 = μ i Θ U Θ 1 ( 1 μ i Θ 3 ) λ 1 3 , v i Θ V Θ { v i Θ } λ 1 μ i Θ U Θ 1 ( 1 μ i Θ 3 ) λ 2 3 , v i Θ V Θ { v i Θ } λ 2 = λ 1 Θ λ 2 Θ
(5)
( Θ Φ ) λ = μ i Θ U Θ , μ i Φ U Φ { μ i Θ μ i Φ } , v i Θ V Θ , v i Φ V Φ v i Θ 3 + v i Φ 3 v i Θ 3 v i Φ 3 3 λ = μ i Θ U Θ , μ i Φ U Φ { μ i Θ μ i Φ } λ , v i Θ V Θ , v i Φ V Φ 1 ( 1 v i Θ 3 v i Φ 3 + v i Θ 3 v i Φ 3 ) λ 3 = μ i Θ U Θ , μ i Φ U Φ { μ i Θ λ μ i Φ λ } , v i Θ V Θ , v i Φ V Φ 1 ( 1 v i Θ 3 ) λ ( 1 v i Φ 3 ) λ 3 = μ i Θ U Θ { μ i Θ λ } , v i Θ V Θ 1 ( 1 v i Θ 3 ) λ 3 μ i Φ U Φ { μ i Φ λ } , v i Φ V Φ 1 ( 1 v i Φ 3 ) λ 3 = Θ λ Φ λ
(6)
Θ λ 1 Θ λ 2 = μ i Θ U Θ { μ i Θ λ 1 } , v i Θ V Θ { 1 ( 1 v i Θ 3 ) λ 1 3 } μ i Θ U Θ { μ i Θ λ 2 } , v i Θ V Θ { 1 ( 1 v i Θ 3 ) λ 2 3 } = μ i Θ U Θ { μ i Θ λ 1 + λ 2 } , v i Θ V Θ { 1 ( 1 v i Θ 3 ) λ 1 + λ 2 3 } = Θ λ 1 + λ 2
Theorem 2.
1 
A 1 A 2 = A 2 A 1
2 
A 1 A 2 = A 2 A 1
3 
A 1 ( A 2 A 3 ) = ( A 1 A 2 ) A 3
4 
A 1 ( A 2 A 3 ) = ( A 1 A 2 ) A 3
5 
λ ( A 1 A 2 ) = λ A 1 λ A 2
6 
( A 1 A 2 ) λ = A 1 λ A 2 λ
Proof. 
We will prove (1), (3), and (5).
(1)
A 1 A 2 = ( x , ς ) , min ( μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) ) , max ( v i A 1 ( x , ς ) , v i A 2 ( x , ς ) ) = ( x , ς ) , min ( μ i A 2 ( x , ς ) , μ i A 1 ( x , ς ) ) , max ( v i A 2 ( x , ς ) , v i A 1 ( x , ς ) ) = A 2 A 1
(3)
A 1 ( A 2 A 3 ) = A 1 { ( x , ς ) , min ( μ i A 2 ( x , ς ) , μ i A 3 ( x , ς ) ) , max ( v i A 2 ( x , ς ) , v i A 3 ( x , ς ) ) } = { ( x , ς ) , min μ i A 1 ( x , ς ) , min ( μ i A 2 ( x , ς ) , μ i A 3 ( x , ς ) ) , max v i A 1 ( x , ς ) , max ( v i A 2 ( x , ς ) , v i A 3 ( x , ς ) ) } = { ( x , ς ) , min min ( μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) ) , μ i A 3 ( x , ς ) , max max ( v i A 1 ( x , ς ) , v i A 2 ( x , ς ) ) , v i A 3 ( x , ς ) } = { ( x , ς ) , min ( μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) ) , max ( v i A 1 ( x , ς ) , v i A 2 ( x , ς ) ) } { ( x , ς ) , min ( μ i A 3 ( x , ς ) ) , max ( v i A 3 ( x , ς ) ) } = ( A 1 A 2 ) A 3
(5)
λ ( A 1 A 2 ) = λ ( x , ς ) , max μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) , min v i A 1 ( x , ς ) , v i A 2 ( x , ς ) = μ i A 1 U A 1 μ i A 2 U A 2 1 max μ i A 1 3 , μ i A 2 3 λ 3 , v i A 1 V A 1 v i A 2 V A 2 min v i A 1 λ , v i A 2 λ λ A 1 λ A 2 = μ i A 1 U A 1 1 1 μ i A 1 3 λ 3 , v i A 1 V A 1 v i A 1 λ μ i A 2 U A 2 1 1 μ i A 2 3 λ 3 , v i A 2 V A 2 v i A 2 λ = max μ i A 1 U A 1 μ i A 2 U A 2 1 1 μ i A 1 3 λ 3 , 1 1 μ i A 2 3 λ 3 , min v i A 1 V A 1 v i A 2 V A 2 v i A 1 λ , v i A 2 λ
= μ i A 1 U A 1 μ i A 2 U A 2 1 max μ i A 1 3 , μ i A 2 3 λ 3 , v i A 1 V A 1 v i A 2 V A 2 min v i A 1 λ , v i A 2 λ = λ ( A 1 A 2 )
The other items can be proved analogously.    □
Theorem 3.
(1) 
( A 1 A 2 ) c = A 1 c A 2 c
(2) 
( A 1 A 2 ) c = A 1 c A 2 c
(3) 
( A 1 A 2 ) c = A 1 c A 2 c
(4) 
( A 1 A 2 ) c = A 1 c A 2 c
(5) 
( A 1 c ) λ = ( λ A 1 ) c
(6) 
λ ( A 1 c ) = ( A 1 λ ) c
Proof. 
We will prove (1), (3) and (5)
(1)
( A 1 A 2 ) c = ( x , ς ) , min μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) , max v i A 1 ( x , ς ) , v i A 2 ( x , ς ) c = ( x , ς ) , max v i A 1 ( x , ς ) , v i A 2 ( x , ς ) , min μ i A 1 ( x , ς ) , μ i A 2 ( x , ς ) = A 1 c A 2 c
(3)
( A 1 A 2 ) c = μ i A 1 U A 1 μ i A 2 U A 2 μ i A 1 3 + μ i A 2 3 μ i A 1 3 μ i A 2 3 3 , v i A 1 V A 1 v i A 2 V A 2 v i A 1 v i A 2 c = v i A 1 V A 1 v i A 2 V A 2 v i A 1 v i A 2 , μ i A 1 U A 1 μ i A 2 U A 2 μ i A 1 3 + μ i A 2 3 μ i A 1 3 μ i A 2 3 3 = A 1 c A 2 c
(5)
( A 1 c ) λ = μ i A 1 U A 1 μ i A 1 λ , v i A 1 V A 1 1 ( 1 v i A 1 3 ) λ 3 = v i A 1 V A 1 1 ( 1 v i A 1 3 ) λ 3 , μ i A 1 U A 1 μ i A 1 λ c = ( λ A 1 ) c
The other items can be proved analogously.    □
Theorem 4.
Let
A i = w , ς , U A i ( w , ς ) , V A i ( w , ς ) , for i = 1 , 2
be two multi-Q FHFS ʃ . Then:
(1) 
A 1 = A 2 if
{ μ i A 1 ( w , ς ) , v i A 1 ( w , ς ) } = { μ i A 2 ( w , ς ) , v i A 2 ( w , ς ) } μ i A 1 ( w , ς ) = μ i A 2 ( w , ς ) v i A 1 ( w , ς ) = v i A 2 ( w , ς )
(2) 
A 1 A 2 if
{ μ i A 1 ( w , ς ) , v i A 1 ( w , ς ) } { μ i A 2 ( w , ς ) , v i A 2 ( w , ς ) } μ i A 1 ( w , ς ) μ i A 2 ( w , ς ) v i A 1 ( w , ς ) v i A 2 ( w , ς )
(3) 
A 2 A 1 if
μ i A 1 ( w , ς ) , v i A 1 ( w , ς ) μ i A 2 ( w , ς ) , v i A 2 ( w , ς ) μ i A 1 ( w , ς ) μ i A 2 ( w , ς ) v i A 1 ( w , ς ) v i A 2 ( w , ς )

4. Multi-Q Fermatean Hesitant FSS

4.1. Fermatean Hesitant FSS

Definition 6.
Assume that the set of discourse U and E is a set of parameters in which F ˜ H ( σ ) is the collection of all FHFSS on U. A pair ( F ˜ , E ) is known as a FHFSS over U, given that F ˜ : E F ˜ H ( σ ) with F ˜ ( e ) = { u , μ e ( σ ) , v e ( σ ) σ U } F ˜ H ( σ ) and  ( F ˜ , E ) = { e , F ˜ ( e ) e E } .

4.2. Multi-Q Fermatean Hesitant FSS

Definition 7.
Let W be a set of discourse, E be a set of parameters, and A E .
Define F ˜ Q : A M k QFHFSS , where M k QFHFSS denotes the set of all multi- Q FHFSS .
The pair ( F ˜ Q , A ) represents ( M k QFHFSS) over w, and is described by
( F ˜ Q , A ) = e , U ( x , q ) , V ( x , q ) x W , q Q , e E .
Example 2.
Assume that a corporation wants to purchase three types of products from two distinct businesses, and is considering consulting with two experts on these products ( k = 2 ). Let W = { w 1 , w 2 , w 3 } denote the set of all products, Q = { q 1 , q 2 } the set of brands, and  E = { e 1 = color , e 2 = price , e 3 = ease to use } the set of parameters.
The multi-Q FHFSS   ( F ˜ Q , A ) is defined as follows:
( F ˜ Q , A ) = { e 1 , w 1 q 1 { 0.2 , 0.5 } , { 0.1 , 0.3 } , w 1 q 2 { 0.8 , 0.1 } , { 0.4 , 0.5 } , w 3 q 1 { 0.3 , 0.7 } , { 0.1 , 0.2 } , w 3 q 2 { 0.8 , 0.5 } , { 0.6 , 0.2 } e 2 , w 2 q 1 { 0.7 , 0.6 } , { 0.2 , 0.3 } , w 2 q 2 { 0.5 , 0.2 } , { 0.7 , 0.3 } , w 3 q 1 { 0.4 , 0.3 } , { 0.1 , 0.8 } , w 3 q 2 { 0.1 } , { 0.2 , 0.3 } e 3 , w 1 q 1 { 0.4 , 0.6 } , { 0.2 , 0.4 } , w 1 q 2 { 0.3 , 0.7 } , { 0.4 , 0.5 } , w 2 q 1 { 0.5 , 0.4 } , { 0.6 , 0.7 } , w 2 q 2 { 0.3 , 0.4 } , { 0.7 , 0.2 } } .
Definition 8.
We call ( H ˜ Q , A ) M k QFHFSS a null multi-Q FHFSS if
H ˜ Q ( f ) = for all f A ,
represented by ( , A ) .
Definition 9.
We call ( H ˜ Q , A ) M k QFHSS an absolute multi-Q FHFSS if
H ˜ Q ( f ) = W for all f A ,
represented by ( W , A ) .
Definition 10.
Let ( H ˜ Q , A ) , ( B ˜ Q , B ) M k QFHFSS . Consequently, we assert that ( H ˜ Q , A ) is a multi-Q  FHFS  subset of ( B ˜ Q , B ) , represented by ( H ˜ Q , A ) ( B ˜ Q , B ) , if 
H ˜ Q B ˜ Q and A B .
Definition 11.
Let ( H ˜ Q , A ) , ( B ˜ Q , B ) M k QFHFS ; then,
( H ˜ Q , A ) = ( B ˜ Q , B ) when ( H ˜ Q , A ) ( B ˜ Q , B )
and
( B ˜ Q , B ) ( H ˜ Q , A ) .
Proposition 2.
Let ( H ˜ Q , A ) , ( B ˜ Q , B ) M k QFHFSS ; then:
(i) 
( H ˜ Q , A ) ( W , E )
(ii) 
( , A ) ( H ˜ Q , A )
(iii) 
If ( H ˜ Q , A ) ( B ˜ Q , B ) and ( B ˜ Q , B ) ( K ˜ Q , C ) , then ( H ˜ Q , A ) ( K ˜ Q , C ) .
Proof. 
The proof can be obtained simply from Definition 10.    □
Proposition 3.
Let ( H ˜ Q , A ) , ( B ˜ Q , B ) M k QFHFSS if ( H ˜ Q , A ) = ( B ˜ Q , B ) and ( B ˜ Q , B ) = ( K ˜ Q , C ) ; then, ( H ˜ Q , A ) = ( K ˜ Q , C ) .
Proof. 
The proof can be obtained simply from Definition 10.    □

4.3. Operation of Multi-Q Fermatean Hesitant Fuzzy Soft Sets

1.
Union
Let ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) M K QFHFS ( W ) .
The union of two multi-Q FHFSS   ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) is written as ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( K ˜ Q , C ) , where C = Θ Φ for all e C and 
K ˜ Q ( e ) = H ˜ Q ( e ) if e Θ Φ Φ ˜ Q ( e ) if e Φ Θ H ˜ Q ( e ) Φ ˜ Q ( e ) if e Θ Φ .
2.
Intersection
Let ( H ˜ Q , Θ ) , ( Φ ˜ Q , Φ ) M K QFHFS ( W ) . Then, the intersection of two multi-QFHFSS ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) is written as
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( K ˜ Q , C ) ,
where C = Θ Φ e C ,
( K ˜ Q , C ) = e , min μ i H ˜ Q ( x , q ) , μ i Φ ˜ Q ( x , q ) , max V i H ˜ Q ( x , q ) , V i Φ ˜ Q ( x , q ) : x W , q Q
for i = 1 , 2 , , k .
3.
Complement
Let ( H ˜ Q , Θ ) M K QFHFS ( W ) . Then, the complement of the multi- QFHFSS represented by ( H ˜ Q , Θ ) c is described by ( H ˜ Q , Θ ) c = ( H ˜ Q c , ¬ Θ ) , where
H ˜ Q : ¬ Θ M K QFHFSS
is the transformation provided by H ˜ Q c ( e ) = ( H ˜ Q ( e ) ) c   e ¬ Θ .
Proposition 4.
Let ( H ˜ Q , Θ ) M K QFHFS ( W ) ; then:
(i) 
( H ˜ Q , Θ ) c c = ( H ˜ Q , Θ )
(ii) 
( , Θ ) c = ( W , Θ )
(iii) 
( W , Θ ) c = ( , Θ ) .
Proof. 
The proof follows directly from the definition of complement (Operation 3).    □
Proposition 5.
Let ( H ˜ Q , Θ ) , ( Φ ˜ Q , Φ ) and ( K ˜ Q , C ) M K QFHFSS ; then:
(i) 
( H ˜ Q , Θ ) ( H ˜ Q , Θ ) = ( H ˜ Q , Θ )
(ii) 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( Φ ˜ Q , Φ ) ( H ˜ Q , Θ )
(iii) 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C )
(iv) 
( H ˜ Q , Θ ) ( W , Θ ) = ( W , Θ )
(v) 
( H ˜ Q , Θ ) ( , Θ ) = ( H ˜ Q , Θ ) .
Proof. 
i.
Let ( H ˜ Q , Θ ) ( H ˜ Q , Θ ) = ( Z ˜ Q , C ) , where C = Θ Θ = Θ . Hence,
Z ˜ Q ( e ) = H ˜ Q ( e ) if e Θ Θ = H ˜ Q ( e ) if e Θ Θ = H ˜ Q ( e ) H ˜ Q ( e ) if e Θ Θ = Θ .
Thus, Z ˜ Q ( e ) = H ˜ Q ( e ) if e Θ Θ = . In addition,
Z ˜ Q ( e ) = H ˜ Q ( e ) L ˜ Q ( e ) if e Θ Θ = Θ = H ˜ Q ( e ) if e Θ .
Therefore, Z ˜ Q ( e ) = H ˜ Q ( e ) for all e Θ ; hence,
( H ˜ Q , Θ ) ( H ˜ Q , Θ ) = ( H ˜ Q , Θ ) .
ii.
Let ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( Z ˜ Q , C ) , where C = Θ Φ . Thus,
Z ˜ Q ( e ) = H ˜ Q ( e ) if e Θ Φ Φ ˜ Q ( e ) if e Φ Θ H ˜ Q ( e ) Φ ˜ Q ( e ) if e Θ Φ .
Therefore,
Z ˜ Q ( e ) = H ˜ Q ( e ) if e Θ Φ Φ ˜ Q ( e ) if e Φ Θ H ˜ Q ( e ) Φ ˜ Q ( e ) if e Θ Φ = Φ ˜ Q ( e ) if e Φ Θ H ˜ Q ( e ) if e Θ Φ Φ ˜ Q ( e ) H ˜ Q ( e ) if e Φ Θ ,
as H ˜ Q ( e ) Φ ˜ Q ( e ) = Φ ˜ Q ( e ) H ˜ Q ( e ) . Hence,
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( Φ ˜ Q , Φ ) ( H ˜ Q , Θ ) .
iii.
Let ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( Z ˜ Q , D ) , where
D = Φ C .
Here, Z ˜ Q ( e ) = Φ ˜ Q ( e ) K ˜ Q ( e ) if e D = Φ C .
In addition, let ( H ˜ q , Θ ) ( Z ˜ Q , D ) = ( L ˜ Q , E ) , where
E = Θ D .
Here, L ˜ Q ( e ) = H ˜ Q ( e ) Z ˜ Q ( e ) if e E = Θ D .
Now,
L ˜ Q ( e ) = H ˜ Q ( e ) Z ˜ Q ( e ) if e E = Θ D = H ˜ Q ( e ) ( Φ ˜ Q ( e ) K ˜ Q ( e ) ) if e E = Θ D = Θ ( Φ C ) = ( H ˜ Q ( e ) Φ ˜ Q ( e ) ) K ˜ Q ( e ) if e E = Θ D = Θ ( Φ C ) .
Therefore, ( L ˜ Q , E ) = ( ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ) ( K ˜ Q , C ) .
Hence,
( H ˜ Q , Θ ) ( ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) ) = ( ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ) ( K ˜ Q , C ) .
In the above, (iv) and (v) follow directly from the definitions of the union and intersection of multi- QFHFSS .
Proposition 6.
Let ( H ˜ Q , Θ ) , ( Φ ˜ Q , Φ ) , and ( K ˜ Q , C ) M K QF H FSS ; then:
1. 
( H ˜ Q , Θ ) ( , Θ ) = ( , Θ )
2. 
( H ˜ Q , Θ ) ( W , Θ ) = ( H ˜ Q , Θ )
3. 
( H ˜ Q , Θ ) ( H ˜ Q , Θ ) = ( H ˜ Q , Θ )
4. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( Φ ˜ Q , Φ ) ( H ˜ Q , Θ )
5. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) .
Proof. 
The proofs are straightforward.    □
Proposition 7.
Let ( H ˜ Q , Θ ) , ( Φ ˜ Q , Φ ) and ( K ˜ Q , C ) M k QF H FSS ; then:
i. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c
ii. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c .
Proof. 
   
i.
Let ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( K ˜ Q , C ) , where C = Θ Φ .
Thus,
K ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) if ϱ Θ Φ Φ ˜ Q ( ϱ ) if ϱ Φ Θ H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) if ϱ Θ Φ .
Now, ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( K ˜ Q , C ) c = ( K ˜ Q c , C ) and
K ˜ Q c ( c ) = H ˜ Q c ( ϱ ) if ϱ Θ Φ Φ ˜ Q c ( ϱ ) if ϱ Φ Θ H ˜ Q c ( ϱ ) Φ ˜ Q c ( ϱ ) if ϱ Θ Φ .
Taking Φ = Θ , we have C = Θ Θ = Θ . Thus,
K ˜ Q c ( ϱ ) = H ˜ Q c ( ϱ ) if ϱ Θ Θ Φ ˜ Q c ( ϱ ) if ϱ Θ Θ H ˜ Q c ( ϱ ) Φ ˜ Q c ( ϱ ) if ϱ Θ Θ = H ˜ Q c ( ϱ ) Φ ˜ Q c ( ϱ ) if ϱ Θ .
This proves that ( K ˜ Q , C ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c .
Hence, ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c .
ii.
We can prove this similarly to (i).
Definition 12 (AND, OR operations). 
Let ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) M K QF H FS ( W ) .
We define two operations on such M K QF H FSS as follows:
1. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( D ˜ Q , Θ × Φ ) , where
D ˜ Q ( a , b ) = H ˜ Q ( a ) Φ ˜ Q ( b ) , a Θ , b Φ .
2. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( D ˜ Q , Θ × Φ ) , where
D ˜ Q ( a , b ) = H ˜ Q ( a ) Φ ˜ Q ( b ) , a Θ , b Φ .
Then, we obtain the following properties of M K QF H FSS .
Theorem 5.
Let ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) M K QF H FSS ; then, the following De Morgan’s laws hold:
i. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c
ii. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c .
Proof. 
We use Operation (3), Definition 12 (1), and Proposition 7 (i) to prove Theorem 5 (i):
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( D ˜ Q , Θ × Φ ) c = ( D ˜ Q c , Θ × Φ )
where
D ˜ Q c ( a , b ) = H ˜ Q ( a ) Φ ˜ Q ( b ) c = H ˜ Q c ( a ) Φ ˜ Q c ( b ) = C ˜ Q ( a , b )
for all a Θ , b Φ , where ( C ˜ Q , Θ × Φ ) = ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c .
Similarly, we can apply Operation (3), Definition 12 (2), and Proposition 7 (ii) to prove Theorem 5 (ii).    □
Theorem 6.
Let ( H ˜ Q , Θ ) , ( Φ ˜ Q , Φ ) , and  ( K ˜ Q , C ) M K QFHFS ( W ) . Then, the following associative laws hold:
i. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C )
ii. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) .
Proof. 
Using Definition 12 (1) and Proposition 7 (i), we have
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( D ˜ Q , Φ × C ) = ( N ˜ Q , Θ × Φ × C ) ,
where b Φ , c C :
D ˜ Q ( b , c ) = Φ ˜ Q ( b ) K ˜ Q ( c )
and σ Θ , b Φ , c C :
N ˜ Q ϱ , b , c ) = H ˜ Q ϱ ) D ˜ Q ( b , c ) = H ˜ Q ϱ ) Φ ˜ Q ( b ) K ˜ Q ( c ) = H ˜ Q ϱ ) Φ ˜ Q ( b ) K ˜ Q ( c ) = M ˜ Q ϱ , b ) K ˜ Q ( c )
with
M ˜ Q ϱ , b ) = H ˜ Q ϱ ) Φ ˜ Q ( b ) .
Note that
( M ˜ Q , Θ × Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) .
Thus, Theorem 6 (i) is proved.
Similarly, (ii) can be proved using Definition 12 (2) and Proposition 7 (ii).    □
Theorem 7.
Let ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) M K QF H FSS ; then:
1. 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c ( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c
2. 
( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c .
Proof. 
1.
Suppose that ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( K ˜ Q , C ) , where C = Θ Φ and ϱ C ,
K ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) if ϱ Θ Φ Φ ˜ Q ( ϱ ) if ϱ Φ Θ H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) if ϱ Θ Φ .
Thus,
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) c = ( K ˜ Q , C ) c = ( K ˜ Q c , C )
and
K ˜ Q c ( ϱ ) = H ˜ Q c ( ϱ ) if ϱ Θ Φ Φ ˜ Q c ( ϱ ) if ϱ Φ Θ H ˜ Q c ( ϱ ) Φ ˜ Q c ( ϱ ) if ϱ Θ Φ .
Again, suppose that
( H ˜ Q , Θ ) c ( Φ ˜ Q , Φ ) c = ( H ˜ Q c , Θ ) ( Φ ˜ Q c , Φ ) = ( N ˜ Q , F ) ,
where F = Θ Φ and ϱ F ,
N ˜ Q ( ϱ ) = H ˜ Q c ( ϱ ) Φ ˜ Q c ( ϱ ) .
It can be seen that F C and ϱ F , N ˜ Q ( ϱ ) = H ˜ Q c ( ϱ ) .
2.
The result can be shown in the same way.
Theorem 8.
Let ( H ˜ Q , Θ ) and ( Φ ˜ Q , Φ ) M K QF H FSS ; then:
(i) 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( H ˜ Q , Θ ) ( K ˜ Q , C )
(ii) 
( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ( H ˜ Q , Θ ) ( K ˜ Q , C ) .
Proof. 
1.
Let ( Φ ˜ Q , Φ ) ( K ˜ Q , C ) = ( L ˜ Q , D ) , where D = Φ C .
Thus,
L ˜ Q ( ϱ ) = Φ ˜ Q ( ϱ ) if ϱ Φ C K ˜ Q ( ϱ ) if ϱ C Φ Φ ˜ Q ( ϱ ) K ˜ Q ( ϱ ) if ϱ Φ C .
Additionally, let
( H ˜ Q , Θ ) ( L ˜ Q , D ) = ( M ˜ Q , V ) ,
where
V = Θ D .
Then,
M ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) L ˜ Q ( ϱ ) if ϱ V = Θ D .
Now,
M ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) L ˜ Q ( ϱ ) if ϱ V = Θ D = H ˜ Q ( ϱ ) L ˜ Q ( ϱ ) if ϱ Θ and ϱ D .
If e D = Φ C , then there are three cases:
(a)
Case I: Assume that e Φ C , then L ˜ Q ( ϱ ) = Φ ˜ Q ( ϱ ) if Φ C
(b)
Case II: Assume that e C Φ , then L ˜ Q ( ϱ ) = K ˜ Q ( ϱ ) if C Φ
(c)
Case III: Assume that e Φ C , then L ˜ Q ( ϱ ) = Φ ˜ Q ( ϱ ) K ˜ Q ( ϱ ) if Φ C .
Now,
M ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) L ˜ Q ( ϱ ) if ϱ Θ and ϱ D
= H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) if ϱ Θ and ϱ Φ C , by case 1 H ˜ Q ( ϱ ) K ˜ Q ( ϱ ) if ϱ Θ and ϱ C Φ by case 2 H ˜ Q ( ϱ ) ( Φ ˜ Q ( ϱ ) K ˜ Q ( ϱ ) ) if ϱ Θ and ϱ Φ C by case 3
= ( H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) ) if ϱ Θ and ϱ ( Φ C ) ( H ˜ Q ( ϱ ) K ˜ Q ( ϱ ) ) if ϱ Θ and ϱ ( C Φ ) ( H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) ) ( H ˜ Q ( ϱ ) K ˜ Q ( ϱ ) ) if ϱ Θ and ϱ ( Φ C ) .
Therefore,
( M ˜ Q , V ) = ( ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) ) ( ( H ˜ Q , Θ ) ( K ˜ Q , C ) ) .
2.
The proof is complete. Part (ii) can be proved similarly.
Theorem 9.
Let ( H Q , Θ ) and ( Φ ˜ Q , Φ ) M K QF H FSS ; then:
(i) 
( H Q , Θ ) ( H Q , Θ ) ( Φ ˜ Q , Φ ) = ( H ˜ Q , Θ )
(ii) 
( H ˜ Q , Θ ) ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( H ˜ Q , Θ ) .
Proof. 
i.
Let ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( Z ˜ Q , C ) , where C = Θ Φ ; thus ,
Z ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) if ϱ Θ Φ .
Let ( H ˜ Q , Θ ) ( K ˜ Q , C ) = ( L ˜ Q , D ) , where D = Θ C ; thus,
L ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) if ϱ Θ C K ˜ Q ( ϱ ) if ϱ C Θ H ˜ Q ( ϱ ) K ˜ Q ( ϱ ) if ϱ Θ C .
Now, there are three cases:
(a)
Case 1: Let e Θ C ; then,
L ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) if ϱ Θ C = H ˜ Q ( ϱ ) if ϱ Θ .
Thus, ( L ˜ Q , D ) = ( H ˜ Q , Θ ) .
(b)
Case 2: Let e C Θ . Now, C Θ = ( Θ Φ ) Θ = , meaning that
L ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) if ϱ C Θ = = ( the null M K QF H FSS ) .
Thus, ( L ˜ Q , D ) is the null M K QF H FSS .
(c)
Case 3: Let e Θ C . Now, Θ C = Θ ( Θ Φ ) = Θ Φ = C , meaning that
L ˜ Q ( ϱ ) = H ˜ Q ( ϱ ) Z ˜ Q ( ϱ ) if ϱ Θ C = C = H ˜ Q ( ϱ ) ( H ˜ Q ( ϱ ) Φ ˜ Q ( ϱ ) ) if ϱ C = H ˜ Q ( ϱ ) if ϱ C .
Thus, ( L ˜ Q , D ) = ( H ˜ Q , Θ ) .
In all cases, we get
( H ˜ Q , Θ ) ( H ˜ Q , Θ ) ( Φ ˜ Q , Φ ) = ( H ˜ Q , Θ ) .
ii.
We can prove this similarly.

5. Application of Multi- QF H FSS in Decision-Making

The following section illustrates an instance of multi- QF H FSS . We introduce a method to address the DM problem that relies on evaluating the value of several options; specifically, a greater value indicates a superior object.
Definition 13.
Let X = { e 1 , e 2 , , e i } . Take any two F H FSS   Θ = e i , μ Θ ( e i ) , v Θ ( e i ) : e i X and Φ = e i , μ Φ ( e i ) , v Φ ( e i ) : e i X . The cosine similarity is provided by
C F H S = 1 n i = 1 n μ Θ 3 ( e i ) μ Φ 3 ( e i ) + v Θ 3 ( e i ) v Φ 3 ( e i ) μ Θ 6 ( e i ) + v Θ 6 ( e i ) 3 + μ Φ 6 ( e i ) + v Φ 6 ( e i ) 3 .
The step by step procedure of the proposed model is illustrated in Section Algorithm Algorithm 1.

Algorithm

Algorithm 1: The step by step procedure of the proposed mode.
Step i: Collect information for MQFHFSS
Step ii: Write MQFHFSS
Step iii: Consider the perfect package recommended by experts as a fantastic alternative.
Step iv: Apply cosine similarity.
Step v: Evaluate the production rate of all goods.
Step vi: Select the greatest value.
Step vii: End.
Example 3.
Vision 2030 aims to achieve a comprehensive transformation in the Kingdom of Saudi Arabia, with artificial intelligence playing a pivotal role in achieving many of its goals.
The role of the Saudi Data and Artificial Intelligence Authority (SDAIA) is to lead the national data and artificial intelligence drive and advance the Kingdom to become a leading data-driven economy.
If we are presented with two types of programs to help families make smart decisions within two different systems, taking into account the opinions of two experts, we can assume that U 1 and U 2 represent the set of programs, while Q 1 and Q 2 represent the set of systems. The decision attributes are defined by e 1 (efficiency), e 2 (ease of use), and e 3 (reliability).
  • Step i:
    -
    U 1 and U 2 denote 2 distinct programs
    -
    Q 1 and Q 2 denote 2 distinct types of systems
    -
    e 1 , e 2 , and e 3 respectively denote the efficiency, ease of use, and reliability
    e 1 e 2 e 3
    U 1 Q 1 { 0.30 , 0.12 } , { 0.23 , 0.14 } { 0.20 , 0.17 } , { 0.33 , 0.13 } { 0.35 , 0.32 } , { 0.20 , 0.10 }
    U 1 Q 2 { 0.6 , 0.24 } , { 0.13 , 0.15 } { 0.28 , 0.22 } , { 0.14 , 0.25 } { 0.50 , 0.18 } , { 0.30 , 0.40 }
    e 1 e 2 e 3
    U 2 Q 1 { 0.11 , 0.28 } , { 0.30 , 0.16 } { 0.15 , 0.20 } , { 0.33 , 0.27 } { 0.12 , 0.35 } , { 0.23 , 0.29 }
    U 2 Q 2 { 0.24 , 0.37 } , { 0.50 , 0.20 } { 0.13 , 0.30 } , { 0.18 , 0.29 } { 0.19 , 0.14 } , { 0.37 , 0.26 }
  • Step ii: Write MQFHFS s
    F ( U 1 , U 2 ) = e 1 , U 1 Q 1 { 0.30 , 0.12 } , { 0.23 , 0.14 } U 1 Q 2 { 0.6 , 0.24 } , { 0.13 , 0.15 } U 2 Q 1 { 0.11 , 0.28 } , { 0.30 , 0.16 } U 2 Q 2 { 0.24 , 0.37 } , { 0.50 , 0.20 } e 2 , U 1 Q 1 { 0.20 , 0.17 } , { 0.33 , 0.13 } , U 1 Q 2 { 0.28 , 0.22 } , { 0.14 , 0.25 } U 2 Q 1 { 0.15 , 0.20 } , { 0.33 , 0.27 } , U 2 Q 2 { 0.13 , 0.30 } , { 0.18 , 0.29 } e 3 , U 1 Q 1 { 0.35 , 0.32 } , { 0.20 , 0.10 } , U 1 Q 2 { 0.50 , 0.18 } , { 0.30 , 0.40 } U 2 Q 1 { 0.12 , 0.35 } , { 0.23 , 0.29 } , U 2 Q 2 { 0.19 , 0.14 } , { 0.37 , 0.26 }
  • Step iii: Take the perfect set
    e 1 e 2 e 3
    U × Q { 0.31 , 0.25 } , { 0.29 , 0.16 } { 0.19 , 0.22 } , { 0.24 , 0.23 } { 0.29 , 0.25 } , { 0.27 , 0.26 }
    U 2 Q 1 e 1 = 1 2 i = 1 2 ( 0.30 × 0.31 ) 3 + ( 0.12 × 0.25 ) 3 + ( 0.23 × 0.29 ) 3 + ( 0.14 × 0.16 ) 3 ( 0.30 ) 6 + ( 0.12 ) 6 + ( 0.23 ) 6 + ( 0.14 ) 6 3 × ( 0.31 ) 6 + ( 0.25 ) 6 + ( 0.29 ) 6 + ( 0.16 ) 6 3 = 0.0491
    U 1 Q 1 e 2 = 1 2 i = 1 2 ( 0.20 × 0.19 ) 3 + ( 0.17 × 0.22 ) 3 + ( 0.33 × 0.24 ) 3 + ( 0.13 × 0.23 ) 3 ( 0.20 ) 6 + ( 0.17 ) 6 + ( 0.33 ) 6 + ( 0.13 ) 6 3 × ( 0.19 ) 6 + ( 0.22 ) 6 + ( 0.24 ) 6 + ( 0.23 ) 6 3 = 0.0357
    U 1 Q 1 e 3 = 1 2 i = 1 2 ( 0.33 × 0.29 ) 3 + ( 0.32 × 0.25 ) 3 + ( 0.20 × 0.27 ) 3 + ( 0.10 × 0.26 ) 3 ( 0.35 ) 6 + ( 0.32 ) 6 + ( 0.20 ) 6 + ( 0.10 ) 6 3 × ( 0.29 ) 6 + ( 0.25 ) 6 + ( 0.27 ) 6 + ( 0.26 ) 6 3 = 0.0524
    U 1 Q 2 e 1 = 1 2 i = 1 2 ( 0.6 × 0.31 ) 3 + ( 0.24 × 0.25 ) 3 + ( 0.13 × 0.29 ) 3 + ( 0.15 × 0.16 ) 3 ( 0.6 ) 6 + ( 0.24 ) 6 + ( 0.13 ) 6 + ( 0.15 ) 6 3 × ( 0.31 ) 6 + ( 0.25 ) 6 + ( 0.29 ) 6 + ( 0.16 ) 6 3 = 0.0774
    U 1 Q 2 e 2 = 1 2 i = 1 2 ( 0.28 × 0.19 ) 3 + ( 0.22 × 0.22 ) 3 + ( 0.14 × 0.24 ) 3 + ( 0.25 × 0.23 ) 3 ( 0.28 ) 6 + ( 0.22 ) 6 + ( 0.14 ) 6 + ( 0.25 ) 6 3 × ( 0.19 ) 6 + ( 0.22 ) 6 + ( 0.24 ) 6 + ( 0.23 ) 6 3 = 0.0326
    U 1 Q 2 e 3 = 1 2 i = 1 2 ( 0.50 × 0.29 ) 3 + ( 0.18 × 0.25 ) 3 + ( 0.30 × 0.27 ) 3 + ( 0.4 × 0.26 ) 3 ( 0.50 ) 6 + ( 0.18 ) 6 + ( 0.30 ) 6 + ( 0.4 ) 6 3 × ( 0.29 ) 6 + ( 0.25 ) 6 + ( 0.27 ) 6 + ( 0.26 ) 6 3 = 0.0760
    U 2 Q 1 e 1 = 1 2 i = 1 2 ( 0.11 × 0.31 ) 3 + ( 0.28 × 0.25 ) 3 + ( 0.30 × 0.29 ) 3 + ( 0.16 × 0.16 ) 3 ( 0.11 ) 6 + ( 0.28 ) 6 + ( 0.30 ) 6 + ( 0.16 ) 6 3 × ( 0.31 ) 6 + ( 0.25 ) 6 + ( 0.29 ) 6 + ( 0.16 ) 6 3 = 0.0410
    U 2 Q 1 e 2 = 1 2 i = 1 2 ( 0.15 × 0.19 ) 3 + ( 0.20 × 0.22 ) 3 + ( 0.33 × 0.24 ) 3 + ( 0.27 × 0.23 ) 3 ( 0.15 ) 6 + ( 0.20 ) 6 + ( 0.33 ) 6 + ( 0.27 ) 6 3 × ( 0.19 ) 6 + ( 0.22 ) 6 + ( 0.24 ) 6 + ( 0.23 ) 6 3 = 0.0442
    U 2 Q 1 e 3 = 1 2 i = 1 2 ( 0.12 × 0.29 ) 3 + ( 0.35 × 0.25 ) 3 + ( 0.23 × 0.27 ) 3 + ( 0.29 × 0.26 ) 3 ( 0.12 ) 6 + ( 0.35 ) 6 + ( 0.23 ) 6 + ( 0.29 ) 6 3 × ( 0.29 ) 6 + ( 0.25 ) 6 + ( 0.27 ) 6 + ( 0.26 ) 6 3 = 0.0436
    U 2 Q 2 e 1 = 1 2 i = 1 2 ( 0.24 × 0.31 ) 3 + ( 0.37 × 0.25 ) 3 + ( 0.50 × 0.29 ) 3 + ( 0.20 × 0.16 ) 3 ( 0.24 ) 6 + ( 0.37 ) 6 + ( 0.50 ) 6 + ( 0.20 ) 6 3 × ( 0.31 ) 6 + ( 0.25 ) 6 + ( 0.29 ) 6 + ( 0.16 ) 6 3 = 0.0675
    U 2 Q 2 e 2 = 1 2 i = 1 2 ( 0.13 × 0.19 ) 3 + ( 0.30 × 0.22 ) 3 + ( 0.18 × 0.24 ) 3 + ( 0.29 × 0.23 ) 3 ( 0.13 ) 6 + ( 0.30 ) 6 + ( 0.18 ) 6 + ( 0.29 ) 6 3 × ( 0.19 ) 6 + ( 0.22 ) 6 + ( 0.24 ) 6 + ( 0.23 ) 6 3 = 0.0385
    U 2 Q 2 e 3 = 1 2 i = 1 2 ( 0.19 × 0.29 ) 3 + ( 0.14 × 0.25 ) 3 + ( 0.37 × 0.27 ) 3 + ( 0.26 × 0.26 ) 3 ( 0.19 ) 6 + ( 0.14 ) 6 + ( 0.37 ) 6 + ( 0.26 ) 6 3 × ( 0.29 ) 6 + ( 0.25 ) 6 + ( 0.27 ) 6 + ( 0.26 ) 6 3 = 0.0457
  • Step v: Calculate cosine similarity values
    U 1 Q 1 U 1 Q 2 U 2 Q 1 U 2 Q 2
    e 1 0.04910.07740.04100.0675
    e 2 0.03570.03260.04420.0385
    e 3 0.05240.07600.04360.0457
    0.04570.06200.04290.0505
  • Step vi: The item with the highest mean cosine similarity is the optimal choice.
    Therefore, ( U 1 Q 2 = 0.0620 ) is the optimal choice.

6. Conclusions

This manuscript has combined the multi Q-FSS and FHFS concepts by establishing the idea of MQFHFSS , which brings together the best characteristics of both to effectively solve complicated DM problems with multiple criteria. In this study, we investigate the novel concept of MQFHFSS along with the associated operations and address multi-parameter DM issues within this framework. Through a rigorous exploration of the structure and operations associated with MQFHFSS , we establish a solid theoretical foundation for the concept. We examine essential aggregation operators and demonstrate how these can effectively capture hesitancy, uncertainty, and degree-based preferences in DM environments. The proposed model enables decision-makers to evaluate multiple conflicting criteria with a higher degree of flexibility and precision. Overall, MQFHFSS presents a robust and versatile extension to existing fuzzy set models, opening new possibilities for applications in fields such as expert systems, data analysis, engineering, and economics. In future work, we intend to integrate our proposed method with complex Fermatean fuzzy sets [26] to address two-dimensional multipolarity uncertainty and information.

Author Contributions

N.R.A. is responsible for creation, technique, inquiry, and initial manuscript writing. K.M.A. reviewed and edited the writing. All authors have read and agreed to the published version of the manuscript.

Funding

The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2025).

Data Availability Statement

All data produced or examined in this investigation are incorporated in this article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Adam, F.; Hassan, N. Multi Q-fuzzy soft expert set and its application. J. Intell. Fuzzy Syst. 2016, 30, 943–950. [Google Scholar] [CrossRef]
  2. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  3. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  4. Broumi, S. Q-intuitionistic fuzzy soft sets. J. New Theory 2015, 5, 81–91. [Google Scholar]
  5. Yager, R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar] [CrossRef]
  6. Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 663–674. [Google Scholar] [CrossRef]
  7. Kirişci, M. Data analysis for lung cancer: Fermatean hesitant fuzzy sets approach. In Applied Mathematics, Modeling and Computer Simulation; IOS Press: Amsterdam, The Netherlands, 2022; pp. 701–710. [Google Scholar]
  8. Nazra, A.; Lestari, R.; Wicaksono, G.C. Hesitant intuitionistic fuzzy soft sets. J. Phys. Conf. Ser. 2017, 890, 012118. [Google Scholar] [CrossRef]
  9. Dey, A.; Senapati, T.; Pal, M.; Chen, G. A novel approach to hesitant multi-fuzzy soft set based decision-making. AIMS Math. 2020, 5, 1985–2008. [Google Scholar] [CrossRef]
  10. Alsager, K.M.; Alshehri, N.O.; Akram, M. A decision-making approach based on a multi Q-hesitant fuzzy soft multi-granulation rough model. Symmetry 2018, 10, 711. [Google Scholar] [CrossRef]
  11. Kirişci, M. Fermatean hesitant fuzzy sets for multiple criteria decision-making with applications. Fuzzy Inf. Eng. 2023, 15, 100–127. [Google Scholar] [CrossRef]
  12. Ruan, C.Y.; Chen, X.J.; Gong, S.C.; Ali, S.; Almutairi, B. A decision-making framework based on the Fermatean hesitant fuzzy distance measure and TOPSIS. AIMS Math. 2024, 9, 2722–2755. [Google Scholar] [CrossRef]
  13. Attaullah; Rehman, N.; Khan, A.; Santos-García, G. Fermatean hesitant fuzzy rough aggregation operators and their applications in multiple criteria group decision-making. Sci. Rep. 2023, 13, 6676. [Google Scholar] [CrossRef] [PubMed]
  14. Adam, F.; Hassan, N. Operations on Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8697–8701. [Google Scholar] [CrossRef]
  15. Yang, Y.; Tan, X.; Meng, C. The multi-fuzzy soft set and its application in decision making. Appl. Math. Model. 2013, 37, 4915–4923. [Google Scholar] [CrossRef]
  16. Adam, F.; Hassan, N. Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8689–8695. [Google Scholar] [CrossRef]
  17. Alqablan, K.A.; Alsager, K.M. Multi-Q Cubic Bipolar Fuzzy Soft Sets and Cosine Similarity Methods for Multi-Criteria Decision Making. Symmetry 2024, 16, 1032. [Google Scholar] [CrossRef]
  18. Adam, F.; Hassan, N. Multi Q-fuzzy soft set and its application. Far East J. Math. Sci. 2015, 97, 871–881. [Google Scholar]
  19. Adam, F.; Hassan, N. Multi Q-fuzzy parameterized soft set and its application. J. Intell. Fuzzy Syst. 2014, 27, 419–424. [Google Scholar] [CrossRef]
  20. Senapati, T.; Yager, R.R. Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica 2019, 30, 391–412. [Google Scholar] [CrossRef]
  21. Korucuk, S.; Aytekin, A. Evaluating logistics flexibility in Istanbul-based companies using Interval-Valued Fermatean Fuzzy SWARA. J. Intell. Manag. Decis. 2023, 2, 192–201. [Google Scholar] [CrossRef]
  22. Bouraima, M.B.; Oumar, M.M.S. Prioritizing governance and anti-corruption strategies in Nigeria using the Fermatean fuzzy method. J. Oper. Strateg. Anal. 2025, 3, 14–22. [Google Scholar] [CrossRef]
  23. Badi, I.; Bouraima, M.B.; Su, Q.; Qiu, Y.J.; Wang, Q.P. Prioritization of poverty alleviation strategies in developing countries using the Fermatean fuzzy SWARA method. Oppor. Chall. Sustain. 2025, 4, 33–40. [Google Scholar] [CrossRef]
  24. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 8, 529–539. [Google Scholar] [CrossRef]
  25. Zhang, Z. Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making. Inf. Sci. 2013, 234, 150–181. [Google Scholar] [CrossRef]
  26. Ali, R.; Rahman, K.; Muhammad, J. Complex Fermatean fuzzy models and their algebraic aggregation operators in decision-making: A case study on COVID-19 vaccine selection. J. Oper. Strateg. Anal. 2024, 2, 119–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alrabeah, N.R.; Alsager, K.M. Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making. Symmetry 2025, 17, 1656. https://doi.org/10.3390/sym17101656

AMA Style

Alrabeah NR, Alsager KM. Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making. Symmetry. 2025; 17(10):1656. https://doi.org/10.3390/sym17101656

Chicago/Turabian Style

Alrabeah, Norah Rabeah, and Kholood Mohammad Alsager. 2025. "Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making" Symmetry 17, no. 10: 1656. https://doi.org/10.3390/sym17101656

APA Style

Alrabeah, N. R., & Alsager, K. M. (2025). Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making. Symmetry, 17(10), 1656. https://doi.org/10.3390/sym17101656

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop