Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures
Abstract
1. Introduction
2. Theoretical Framework and Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quirk, T. Insect wings shred bacteria to pieces: Antibacterial ’nanopillars’ on cicada wings pull bacterial membranes apart. Nat. News 2013. [Google Scholar] [CrossRef]
- Li, Z.; Bhardwaj, A.; He, J.; Zhang, W.; Tran, T.T.; Li, Y.; McClung, A.; Nuguri, S.; Watkins, J.J.; Lee, S. Nanoporous amorphous carbon nanopillars with lightweight, ultrahigh strength, large fracture strain, and high damping capability. Nat. Commun. 2024, 15, 8151. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Sou, T.; Masuda, H. Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces. RSC Adv. 2022, 12, 20340–20347. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Maybee, W.G. The strength of hard-rock pillars. Int. J. Rock. Mech. Min. Sci. 2000, 37, 1239–1246. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Xiang, B.; Yin, S.; Pekin, T.; Li, X.; Zhang, R.; Yano, K.; Hwang, D.; Asta, M.; et al. Evaluating the effects of pillar shape and gallium ion beam damage on the mechanical properties of single crystal aluminum nanopillars. J. Mater. Res. 2021, 36, 2515–2528. [Google Scholar] [CrossRef]
- Paulitschke, P.; Seltner, N.; Lebedev, A.; Lorenz, H.; Weig, E. Size-independent Young’s modulus of inverted conical GaAs nanowire resonators. Appl. Phys. Lett. 2013, 103, 261901. [Google Scholar] [CrossRef]
- Solis, A.; Alonso, L. A mathematical model to design pillar-shaped bioinspired mechanical sensors. Mech. Mater. 2024, 195, 105031. [Google Scholar] [CrossRef]
- Ma, Z.; Qiang, Z.; Guo, C.; Jiang, Y.; Zhao, H.; Wen, C.; Ren, L. Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars. NPG Asia Mater. 2021, 13, 61. [Google Scholar] [CrossRef]
- Dang, Z.; Breese, M.B.H.; Sánchez, G.R.; Azimi, S.; Song, J.; Liang, H.; Banas, A.; Torres-Costa, V.; Martín-Palma, R.J. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method. Nanoscale Res. Lett. 2012, 7, 416. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, R.J.; Wang, S.Y.; Lu, M.; Chen, X.; Zheng, Y.X.; Chen, L.Y.; Ye, Z.; Wang, C.Z.; Ho, K.M. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 2015, 5, 7810. [Google Scholar] [CrossRef]
- Sato, R.; Bertelsen, C.V.; Nikitin, M.; Aymerich, E.L.; Malureanu, R.; Svendsen, W.E.; Lavrinenko, A.V.; Takayama, O. Observation of edge bound states in the continuum at truncated silicon pillar photonic crystal. Nat. Commun. 2024, 15, 10544. [Google Scholar] [CrossRef]
- Hassouani, Y.E.; Li, C.; Pennec, Y.; Boudouti, E.H.E.; Larabi, H.; Akjouj, A.; Matar, O.B.; Laude, V.; Papanikolaou, N.; Martinez, A.; et al. Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Phys. Rev. B 2010, 82, 155405. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.; Seo, M.; Lee, S.; Cho, H.; Meyyappan, M.; Baek, C. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes. Nat. Electron. 2019, 2, 572–579. [Google Scholar] [CrossRef]
- Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.; Zwiller, V.; Kouwenhoven, L.; Bakkers, E. Growth and optical properties of axial hybrid III–V silicon nanowires. Nat. Commun. 2012, 3, 1266. [Google Scholar] [CrossRef]
- Peeters, W.H.J.; van Lange, V.T.; Belabbes, A.; Hemert, M.C.v.; Jansen, M.M.; Farina, R.; Tilburg, M.A.J.v.; Verheijen, M.A.; Botti, S.; Bechstedt, F.; et al. Direct bandgap quantum wells in hexagonal silicon germanium. Nat. Commun. 2024, 15, 5252. [Google Scholar] [CrossRef]
- Atikian, H.A.; Sinclair, N.; Latawiec, P.; Xiong, X.; Meesala, S.; Gauthier, S.; Wintz, D.; Randi, J.; Bernot, D.; DeFrances, S.; et al. Diamond mirrors for high-power continuous-wave lasers. Nat. Commun. 2022, 13, 2610. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Li, C.; Jiao, W.; Jiang, S.; Li, X.; Duan, J.; Li, J. Mechanically reconfigurable metasurfaces: Fabrications and applications. NPJ Nanophoton. 2024, 1, 16. [Google Scholar] [CrossRef]
- Weaver, W.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Han, M.; Benaroya, H.; Wei, T. Dynamics of Transversely Vibrating Beams Using Four Engineering Theories. J. Sound Vib. 1999, 225, 935–988. [Google Scholar] [CrossRef]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s modulus of silicon? J. Microelectromech. Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]
- Cook, H.D. Precision density measurement of silicon. J. Res. Natl. Bur. Stand. 1964, 68A, 529–533. [Google Scholar] [CrossRef]
- Novotny, L. Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. 2010, 78, 1199–1202. [Google Scholar] [CrossRef]
- Yeo, I.; Han, I.K. Theoretical modeling of strain-coupled nanomechanical pillar resonators. Mater. Sci. Semicond. Process. 2024, 175, 108283. [Google Scholar] [CrossRef]
- Yeo, I.; Kim, D.K.; Han, I.K.; Song, J.D. Strain-induced control of a pillar cavity-GaAs single quantum dot photon source. Sci. Rep. 2019, 9, 18564. [Google Scholar] [CrossRef]
- Richter, K.; Orfert, M.; Schührer, H. Variation of etch profile and surface properties during patterning of silicon substrates. Surf. Coat. Technol. 2001, 141, 288–293. [Google Scholar] [CrossRef]
- Zhu, X.; Pan, A.; Shokouhi, B.; Cui, B. Cryogenic etching of positively tapered silicon pillars with controllable profiles. J. Vac. Sci. Technol. B 2024, 42, 032206. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Z.; Pan, A.; Cui, B. High aspect ratio silicon ring-shape micropillars fabricated by deep reactive ion etching with sacrificial structures. Micro Nano Eng. 2024, 22, 100234. [Google Scholar] [CrossRef]
- Ovartchaiyapong, P.; Lee, K.W.; Myers, B.A.; Jayich, A.C.B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 2014, 5, 4429. [Google Scholar] [CrossRef]
- Doster, J.; Hoenl, S.; Lorenz, H.; Paulitschke, P.; Weig, E.M. Collective dynamics of strain-coupled nanomechanical pillar resonators. Nat. Commun. 2019, 10, 5246. [Google Scholar] [CrossRef]
- Yeo, I.; de Assis, P.L.; Gloppe, A.; Dupont-Ferrier, E.; Verlot, P.; Malik, N.S.; Dupuy, E.; Claudon, J.; Auffèves, A.; Nougues, G.; et al. Strain-mediated Coupling in a Quantum Dot-mechanical Oscillator Hybrid System. Nat. Nano 2014, 9, 106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, C.; Kim, J.; Yeo, I. Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures. Symmetry 2025, 17, 1610. https://doi.org/10.3390/sym17101610
Shin C, Kim J, Yeo I. Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures. Symmetry. 2025; 17(10):1610. https://doi.org/10.3390/sym17101610
Chicago/Turabian StyleShin, Chan, Jinyong Kim, and Inah Yeo. 2025. "Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures" Symmetry 17, no. 10: 1610. https://doi.org/10.3390/sym17101610
APA StyleShin, C., Kim, J., & Yeo, I. (2025). Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures. Symmetry, 17(10), 1610. https://doi.org/10.3390/sym17101610